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Abstract

We propose the Z distribution to tackle the Behrens-Fisher problem. First, we define the Z
distribution which is a generalization of the t distribution, and then find the pdf and cdf of the
Z distribution. After that, we apply the Z distribution in the hypothesis testing of two normal
means, where three different assumptions of the variances are considered. The Z distribution is
very flexible in the applications in which one statistics that obeys the Z distribution is applicable
to all the three assumptions of the variances. Finally, we provide two groups of simulation studies
for the hypothesis testing problems of two normal means.
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1 Introduction

In statistics, the Behrens-Fisher problem ([1]), named after Walter Ulrich Behrens and Ronald
Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between
the means of two normally distributed populations when the variances of the two populations are
not assumed to be equal, based on two independent samples.

There is a large literature dealing with the Behrens-Fisher problem, see e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Some
articles are closely related to the Behrens-Fisher problem, see e.g., [36, 37, 38, 39]. Some people
considered the generalized Behrens-Fisher problem (i.e., the k samples Behrens-Fisher problem),
see e.g., [40, 41, 42, 43, 44, 22]. Others considered the multivariate Behrens-Fisher problem, see
e.g., [45, 46, 47].

Our approach is different from the existing approaches. We introduce the Z distribution, which
is very flexible in the applications of the hypothesis testing of two normal means. One statistics
that obeys the Z distribution is applicable to all assumptions of σ2

X and σ2
Y . Moreover, when the

variances σ2
X and σ2

Y are unknown but the ratio of variances R = σ2
X/σ2

Y = 1/ρ2 is known, we find
that the statistics given in [15] can be obtained through the Z distribution. Finally, we provide the
simulation studies for the hypothesis testing problems in Remark 3.1. Two groups of simulation
studies are considered. The simulation studies exemplify the power of our approach.

The rest of the paper is organized as follows. In the next Section 2, we define the SIG distribution
and find its pdf, and then we define the Z distribution and find its pdf and cdf. In Section 3, we
apply the Z distribution in the hypothesis testings of two normal means, three different assumptions:
σ2
X and σ2

Y are known, σ2
X = σ2

Y = σ2 are unknown, and σ2
X ̸= σ2

Y are unknown (the Behrens-
Fisher problem) are considered. The Z distribution is very flexible in the applications in which one
statistics that obeys the Z distribution is applicable to all assumptions of σ2

X and σ2
Y . Section 4

provides two groups of simulation studies for the hypothesis testing problems in Remark 3.1. In
particular, we assume two error structures for the l∞ error: The polynomial error structure and the
exponential error structure. Section 5 concludes.

2 SIG Distribution, Z Distribution, and the Cdf of the
Z Distribution

In this section, we first define the SIG distribution, and then we utilize it to define the Z distribution.
The two distributions are introduced by us. Finally, we analytically derive the cumulative distribution
function (cdf) of the Z distribution which is useful in the applications in the hypothesis testing of
two normal means.

Definition 2.1. LetGi ∼ Gamma (αi, βi) , i = 1, 2, G1 andG2 are independent. LetW = G1+G2.
Then W has a Sum of Independent Gamma (SIG) distribution, SIG (α1, β1, α2, β2). Equivalently,
a random variable W has an SIG (α1, β1, α2, β2) distribution if it has a pdf

fW (w|α1, β1, α2, β2) =
1

Γ (α1 + α2)β
α1
1 βα2

2

wα1+α2−1e−w/β2MB (a (w)) , (2.1)

w > 0, α1, β1, α2, β2 > 0,

2
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where

MB (a (w)) = MB

(
w

(
1

β2
− 1

β1

))
= 1 +

∞∑
k=1

(
k−1∏
r=0

α1 + r

α1 + α2 + r

) [
w
(

1
β2

− 1
β1

)]k
k!

,

is the moment generating function (mgf) of B ∼ Beta (α1, α2) evaluated at a (w).

The derivation of the pdf of the SIG (α1, β1, α2, β2) distribution uses the convolution formula and
the mgf of Beta (α1, α2). The proof of (2.1) can be found in the supplement.

We make the following three remarks for the SIG distribution. The following remark is about the
mgf of B ∼ Beta (α1, α2) evaluated at a (w).

Remark 2.1. The mgf of B ∼ Beta (α1, α2) evaluated at a (w) is

MB (a (w)) = 1 +

∞∑
k=1

akw
k =

∞∑
k=0

akw
k,

where

a0 = 1, ak =

(
k−1∏
r=0

α1 + r

α1 + α2 + r

) ( 1
β2

− 1
β1

)k
k!

, k ≥ 1. (2.2)

Moreover, if β1 = β2 = β, then ak = 0 for k ≥ 1, and MB (a (w)) = 1.

The following remark is about the expectation, the variance, and the mgf of the SIG distribution.

Remark 2.2.

EW = EG1 + EG2 = α1β1 + α2β2,

V ar (W ) = V ar (G1 +G2) = V ar (G1) + V ar (G2) = α1β
2
1 + α2β

2
2 ,

MW (t) = MG1+G2 (t) = MG1 (t)MG2 (t) = (1− β1t)
−α1 (1− β2t)

−α2 , t < min

{
1

β1
,
1

β2

}
.

The following remark states that the SIG distribution generalizes the gamma distribution.

Remark 2.3. The SIG distribution is a generalization of the gamma distribution. More precisely,

Gamma (α, β) = SIG
(
α1 =

α

2
, β1 = β, α2 =

α

2
, β2 = β

)
= Gamma

(α
2
, β
)
+Gamma

(α
2
, β
)
.

We can verify it by writing out the pdfs of the two distributions and checking that they are equal.
The proof can be found in the supplement.

With the SIG distribution, we are ready to define the Z distribution.

Definition 2.2. Let Z = X/
√
W , whereX ∼ N (0, 1) andW ∼ SIG (α1, β1, α2, β2) are independent.

Then Z has a Z distribution, Z (α1, β1, α2, β2). Equivalently, a random variable Z has a Z (α1, β1, α2, β2)
distribution if it has a pdf

fZ (z|α1, β1, α2, β2)

=
1√

2πΓ (α1 + α2)β
α1
1 βα2

2

∞∑
k=0

akΓ

(
α1 + α2 + k +

1

2

)(
1

z2

2
+ 1

β2

)α1+α2+k+ 1
2

, (2.3)

z ∈ R, α1, β1, α2, β2 > 0,

where ak (k ≥ 0) are given by (2.2).

3
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The proof of (2.3) follows from the derivation of the t pdf. It is elementary but tedious, and thus
we put it into the supplement. For the Z distribution, we have the following remark which states
that the Z distribution generalizes the t distribution.

Remark 2.4. The Z (α1, β1, α2, β2) distribution is a generalization of the t (p) distribution. More
precisely,

t (p) = Z

(
α1 =

p

4
, β1 =

2

p
, α2 =

p

4
, β2 =

2

p

)
.

We can verify it by writing out the pdfs of the two distributions and checking that they are equal.
The proof can be found in the supplement.

For the cdf of the Z (α1, β1, α2, β2) distribution, we have the following theorem whose proof can be
found in the supplement.

Theorem 2.1. The cdf of the Z (α1, β1, α2, β2) distribution is given by

FZ (z|α1, β1, α2, β2) =
1√

πΓ (α1 + α2)β
α1
1 βα2

2

∞∑
k=0

akΓ

(
α1 + α2 + k +

1

2

)
βα1+α2+k
2 Jk,

where

Jk =

∫ √
β2
2

z

−∞

1

(1 + u2)α1+α2+k+ 1
2

du,

and ak (k ≥ 0) are given by (2.2). In particular, when p0 = 2 (α1 + α2) is a positive integer,

FZ (z|α1, β1, α2, β2)

=
1

Γ (α1 + α2)β
α1
1 βα2

2

∞∑
k=0

akβ
α1+α2+k
2 Γ (α1 + α2 + k)FTpk

(√
(α1 + α2 + k)β2z

)
, (2.4)

where pk = 2 (α1 + α2 + k), k = 0, 1, . . ., and FTpk
(·) is the cdf of the t random variable with pk

degrees of freedom.

For Theorem 2.1, we have the following three remarks. The following remark states that the in
particular part of Theorem 2.1 is usually applicable in the hypothesis testing of two normal means.

Remark 2.5. For the applications in Section 3, we have α1 = (n− 1) /2 and α2 = (m− 1) /2 or
α1 = α2 = (n+m− 2) /4, then p0 = 2 (α1 + α2) = n +m − 2 is a positive integer for n +m ≥ 3.
That is, the in particular part of Theorem 2.1 is usually applicable.

The following remark states that the l∞ error of the approximation decays exponentially.

Remark 2.6. When p0 = 2 (α1 + α2) is a positive integer, the cdf of Z is usually approximated by
its truncated sum

FK
Z (z|α1, β1, α2, β2)

=
1

Γ (α1 + α2)β
α1
1 βα2

2

K∑
k=0

akβ
α1+α2+k
2 Γ (α1 + α2 + k)FTpk

(√
(α1 + α2 + k)β2z

)
.

Define the l∞ error of the approximation FK
Z (z) by

l∞ (K) = max
z∈R

∣∣∣FZ (z)− FK
Z (z)

∣∣∣ .
Section 4 exemplifies that

l∞ (K) = CqK ,

for some positive constants C and 0 < q < 1. That is, the l∞ (K) decays exponentially.

4
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The following remark is useful in the programming of the pdf and the cdf of the Z distribution for
some special parameterizations.

Remark 2.7. When (α1, β1, α2, β2) =
(

p
4
, 2
p
, p
4
, 2
p

)
, then by Remark 2.4,

Z

(
α1 =

p

4
, β1 =

2

p
, α2 =

p

4
, β2 =

2

p

)
= t (p) .

Thus,

FZ

(
z|α1 =

p

4
, β1 =

2

p
, α2 =

p

4
, β2 =

2

p

)
= FTp (z) ,

fZ

(
z|α1 =

p

4
, β1 =

2

p
, α2 =

p

4
, β2 =

2

p

)
= fTp (z) ,

where Tp ∼ t (p). When β1 = β2, then by Remark 2.1, ak = 0 for k ≥ 1. Thus,

FZ (z|α1, β1, α2, β2) = FTp0

(√
(α1 + α2)β2z

)
,

where p0 = 2 (α1 + α2) and Tp0 ∼ t (p0), and

fZ (z|α1, β1, α2, β2) = F ′
Z (z|α1, β1, α2, β2)

=
√

(α1 + α2)β2fTp0

(√
(α1 + α2)β2z

)
.

3 Applications in the Hypothesis Testing of Two Normal
Means

In this section, we apply the Z distribution in the hypothesis testing of two normal means under
three different assumptions of the variances.

Let X1, . . . , Xn be a random sample from a normal distribution N
(
µX , σ2

X

)
, and Y1, . . . , Ym be an

independent random sample from another normal distribution N
(
µY , σ2

Y

)
. We are interested in

testing
H0 : µX = µY versus H1 : µX ̸= µY

under three different assumptions of the variances.

Assumption 1. σ2
X and σ2

Y are known

Under H0, the usual pivot is

N =
X̄ − Ȳ√
σ2
X
n

+
σ2
Y
m

∼ N (0, 1) .

The pivot using the Z distribution is given by

Z1 =
X̄ − Ȳ√
S2
X
n

+
S2
Y
m

=

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

S2
X
n

+
S2
Y
m

/

√
σ2
X
n

+
σ2
Y
m

=
N√
W1

,

where

W1 =

S2
X
n

+
S2
Y
m

σ2
X
n

+
σ2
Y
m

.

5
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Since
(n− 1)S2

X

σ2
X

= χ2
n−1,

(m− 1)S2
Y

σ2
Y

= χ2
m−1,

we have

S2
X =

σ2
X

n− 1
χ2
n−1, S

2
Y =

σ2
Y

m− 1
χ2
m−1.

Thus W1 can be rewritten as

W1 =

σ2
X

n(n−1)
χ2
n−1 +

σ2
Y

m(m−1)
χ2
m−1

σ2
X
n

+
σ2
Y
m

.

Let

a1 =
σ2
X

n (n− 1)
(

σ2
X
n

+
σ2
Y
m

) , a2 =
σ2
Y

m (m− 1)
(

σ2
X
n

+
σ2
Y
m

) . (3.1)

Therefore,

W1 = a1χ
2
n−1 + a2χ

2
m−1

= a1G

(
n− 1

2
, 2

)
+ a2G

(
m− 1

2
, 2

)
= G

(
n− 1

2
, 2a1

)
+G

(
m− 1

2
, 2a2

)
∼ SIG

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

where a1 and a2 are given by (3.1). Consequently,

Z1 =
N√
W1

∼ Z

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
.

Assumption 2. σ2
X = σ2

Y = σ2 are unknown

Under H0, the usual pivot is

T =
X̄ − Ȳ√

S2
p

(
1
n
+ 1

m

) ∼ t (n+m− 2) ,

where

S2
p =

1

n+m− 2

[
n∑

i=1

(
Xi − X̄

)2
+

m∑
i=1

(
Yi − Ȳ

)2]
=

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2

is referred to as a pooled variance estimate. Now we derive the pivot using the Z distribution. By
Remark 2.4 and T ∼ t (n+m− 2), we have

T ∼ Z

(
α1 =

n+m− 2

4
, β1 =

2

n+m− 2
, α2 =

n+m− 2

4
, β2 =

2

n+m− 2

)
.

That is, the usual pivot T is a Z distribution.

The random variable T has a Z distribution with other parameter values. In fact,

T =

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

S2
p

(
1
n
+ 1

m

)
/

√
σ2
X
n

+
σ2
Y
m

=
N√
W

′
2

,

6
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where N ∼ N (0, 1),

W
′
2 =

S2
p

(
1
n
+ 1

m

)
σ2
X
n

+
σ2
Y
m

=
S2
p

(
1
n
+ 1

m

)
σ2
(
1
n
+ 1

m

) =
S2
p

σ2
=

(n+m− 2)S2
p

σ2 (n+m− 2)

=
(n− 1)S2

X + (m− 1)S2
Y

σ2 (n+m− 2)
=

χ2
n−1 + χ2

m−1

n+m− 2

=
1

n+m− 2
G

(
n− 1

2
, 2

)
+

1

n+m− 2
G

(
m− 1

2
, 2

)
= G

(
n− 1

2
,

2

n+m− 2

)
+G

(
m− 1

2
,

2

n+m− 2

)
∼ SIG

(
α1 =

n− 1

2
, β1 =

2

n+m− 2
, α2 =

m− 1

2
, β2 =

2

n+m− 2

)
.

Therefore,

T =
N√
W

′
2

∼ Z

(
α1 =

n− 1

2
, β1 =

2

n+m− 2
, α2 =

m− 1

2
, β2 =

2

n+m− 2

)
.

By (2.3), it is easy to check that

Z

(
α1 =

n+m− 2

4
, β1 =

2

n+m− 2
, α2 =

n+m− 2

4
, β2 =

2

n+m− 2

)
= Z

(
α1 =

n− 1

2
, β1 =

2

n+m− 2
, α2 =

m− 1

2
, β2 =

2

n+m− 2

)
.

That is, the two Z distributions with different parameterizations are equal.

We can derive another pivot using the Z distribution. Let

Z2 =
X̄ − Ȳ√
S2
X
n

+
S2
Y
m

=

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

S2
X
n

+
S2
Y
m

/

√
σ2
X
n

+
σ2
Y
m

=
N√
W2

,

where N ∼ N (0, 1),

W2 =

S2
X
n

+
S2
Y
m

σ2
X
n

+
σ2
Y
m

= a1χ
2
n−1 + a2χ

2
m−1,

a1 =
σ2
X

n (n− 1)
(

σ2
X
n

+
σ2
Y
m

) =
1

n (n− 1)
(
1
n
+ 1

m

) =
m

(n− 1) (m+ n)
, (3.2)

a2 =
σ2
Y

m (m− 1)
(

σ2
X
n

+
σ2
Y
m

) =
1

m (m− 1)
(
1
n
+ 1

m

) =
n

(m− 1) (m+ n)
. (3.3)

Note the derivation for W2 is similar to that for W1. Thus,

W2 ∼ SIG

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

where a1 and a2 are given by (3.2) and (3.3). Consequently,

Z2 =
N√
W2

∼ Z

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
.

Assumption 3. σ2
X ̸= σ2

Y are unknown

7
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This is the Behrens-Fisher Problem. Under H0, the usual pivot is

T ′ =
X̄ − Ȳ√
S2
X
n

+
S2
Y
m

=

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

S2
X
n

+
S2
Y
m

/

√
σ2
X
n

+
σ2
Y
m

=
N√
W3

.

However, the exact distribution of T ′ is not pleasant ([48]). The distribution of T ′ is usually
approximated by using Satterthwaite’s approximation ([7]).

W3 =

S2
X
n

+
S2
Y
m

σ2
X
n

+
σ2
Y
m

≈ χ2
ν

ν
,

where ν can be estimated with

ν̂ =

(
S2
X
n

+
S2
Y
m

)2
S4
X

n2(n−1)
+

S4
Y

m2(m−1)

.

Therefore,

T ′ =
N√
W3

≈ N√
χ2
ν̂
ν̂

= t (ν̂) .

By Remark 2.4,

T ′ ≈ t (ν̂) = Z

(
α1 =

ν̂

4
, β1 =

2

ν̂
, α2 =

ν̂

4
, β2 =

2

ν̂

)
.

That is, the usual pivot T ′ is approximately a Z distribution.

We can approximate T ′ by another Z distribution. First,

W3 =

S2
X
n

+
S2
Y
m

σ2
X
n

+
σ2
Y
m

= a1χ
2
n−1 + a2χ

2
m−1

∼ SIG

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

where a1 and a2 are given by (3.1). Note that the derivation for W3 is similar to that for W1.
Since σ2

X and σ2
Y are unknown and they are not equal, and a1 and a2 depend on σ2

X and σ2
Y , the

distribution of W3 is not completely known. It is natural to use S2
X ≈ σ2

X and S2
Y ≈ σ2

Y . Therefore,

â1 =
S2
X

n (n− 1)
(

S2
X
n

+
S2
Y
m

) , â2 =
S2
Y

m (m− 1)
(

S2
X
n

+
S2
Y
m

) ,
W3 ≈ SIG

(
α1 =

n− 1

2
, β1 = 2â1, α2 =

m− 1

2
, β2 = 2â2

)
,

T ′ =
N√
W3

≈ Z

(
α1 =

n− 1

2
, β1 = 2â1, α2 =

m− 1

2
, β2 = 2â2

)
.

Note that the above Z distribution shares some characteristics of Fisher’s solution using fiducial
argument (see the supplemental file). Namely, the Z distribution assumes that R̂ = S2

X/S2
Y =

s2X/s2Y is known.

8
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In particular, when the ratio of variances R = σ2
X/σ2

Y = 1/ρ2 is known, [15] showed that under H0,

T̃ =
X̄ − Ȳ√

1
n
+ ρ2

m

√
(n−1)S2

X
+(m−1)S2

Y
/ρ2

n+m−2

(3.4)

∼ t (n+m− 2)

= Z

(
α1 =

n+m− 2

4
, β1 =

2

n+m− 2
, α2 =

n+m− 2

4
, β2 =

2

n+m− 2

)
.

We can derive another pivot using the Z distribution.

Z4 =
X̄ − Ȳ√
S2
X
n

+
S2
Y
m

=

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

S2
X
n

+
S2
Y
m

/

√
σ2
X
n

+
σ2
Y
m

=
N√
W4

,

where N ∼ N (0, 1),

W4 =

S2
X
n

+
S2
Y
m

σ2
X
n

+
σ2
Y
m

= a1χ
2
n−1 + a2χ

2
m−1

∼ SIG

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

a1 and a2 are given by (3.1). But now R = σ2
X/σ2

Y is known. Therefore,

a1 =
1

n (n− 1)
(

1
n
+ 1/R

m

) =
mR

(n− 1) (mR+ n)
,

a2 =
1

m (m− 1)
(
R
n
+ 1

m

) =
n

(m− 1) (mR+ n)
.

Consequently,

Z4 =
N√
W4

∼ Z

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
.

The Z distribution is very flexible in the applications of the hypothesis testing of two normal means.

If a pivot is a t (p) distribution, then by Remark 2.4, it is a Z
(
α1 = p

4
, β1 = 2

p
, α2 = p

4
, β2 = 2

p

)
distribution. The following remark states that one statistics that obeys the Z distribution is
applicable to all assumptions of σ2

X and σ2
Y .

Remark 3.1. Under H0, the statistics

Z =
X̄ − Ȳ√
S2
X
n

+
S2
Y
m

=

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

S2
X
n

+
S2
Y
m

/

√
σ2
X
n

+
σ2
Y
m

=
N√
W

∼ Z

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

where N ∼ N (0, 1),

W =

S2
X
n

+
S2
Y
m

σ2
X
n

+
σ2
Y
m

= a1χ
2
n−1 + a2χ

2
m−1

∼ SIG

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,
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a1 =
σ2
X

n (n− 1)
(

σ2
X
n

+
σ2
Y
m

) =
1

n (n− 1)
(

1
n
+ 1/R

m

) =
mR

(n− 1) (mR+ n)
, (3.5)

a2 =
σ2
Y

m (m− 1)
(

σ2
X
n

+
σ2
Y
m

) =
1

m (m− 1)
(
R
n
+ 1

m

) =
n

(m− 1) (mR+ n)
, (3.6)

R =
σ2
X

σ2
Y

.

• If σ2
X and σ2

Y are known, then R is known, so a1 and a2 are known, and the Z distribution
is well defined.

• If σ2
X = σ2

Y = σ2 are unknown, but R = 1 is known, so a1 and a2 are known, and the Z
distribution is well defined.

• If σ2
X ̸= σ2

Y are unknown, but R ̸= 1 is known, so a1 and a2 are known, and the Z distribution
is well defined.

• If σ2
X ̸= σ2

Y are unknown, and R is also unknown (the Behrens-Fisher Problem), then we can
approximate R by R̂ = S2

X/S2
Y , so a1 and a2 are approximated by

â1 =
mR̂

(n− 1)
(
mR̂+ n

) , â2 =
n

(m− 1)
(
mR̂+ n

) .

Therefore, the Z distribution is well defined.

The P value of the Z distribution is computed as follows.

p = P (|Z| ≥ |z|) = 2P (Z ≥ |z|)
= 2 (1− P (Z ≤ |z|)) = 2 (1− FZ (|z|)) ,

where z = (x̄− ȳ) /
√

s2X/n+ s2Y /m is the observed value of Z, FZ (·) is the cdf of the random
variable Z. If p < α, the chosen nominal significance level of the test, then reject H0 : µX = µY ,
otherwise, accept H0. A simulation study of the P value is given in the next section.

The 100× (1− α)% interval estimate of θ (= µX − µY ) based on the Z (θ) statistics,

Z (θ) =

(
X̄ − Ȳ

)
− θ√

S2
X
n

+
S2
Y
m

,

is defined as a set Θ1−α = {θ : P (|Z (θ)| ≥ |Zobs (θ)|) ≥ α} and is given as

(x̄− ȳ)± γ1−α
2

√
s2X
n

+
s2Y
m

,

where

Zobs (θ) =
(x̄− ȳ)− θ√

s2
X
n

+
s2
Y
m

is the observed value of Z (θ), and

γ1−α
2
= F−1

Z

(
1− α

2

)
is the lower 1−α/2 critical value (cut-off point or quantile) of the Z distribution. How to calculate
or compute γ1−α

2
is a problem.

10
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The following remark states that the T̃ statistics (3.4) given in [15] can be obtained through the Z
distribution.

Remark 3.2. We can define the Z distribution differently. Let

Z =
X̄ − Ȳ√
f (S2

X , S2
Y )

=

(
X̄ − Ȳ

)
/

√
σ2
X
n

+
σ2
Y
m√

f (S2
X , S2

Y )/

√
σ2
X
n

+
σ2
Y
m

=
N√
W

∼ Z

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

where N ∼ N (0, 1),
f
(
S2
X , S2

Y

)
= k1 (n,m,R)S2

X + k2 (n,m,R)S2
Y ,

W =
f
(
S2
X , S2

Y

)
σ2
X
n

+
σ2
Y
m

=
k1S

2
X + k2S

2
Y

σ2
X
n

+
σ2
Y
m

=
k1

σ2
X

n−1
χ2
n−1 + k2

σ2
Y

m−1
χ2
m−1

σ2
X
n

+
σ2
Y
m

= a1χ
2
n−1 + a2χ

2
m−1

∼ SIG

(
α1 =

n− 1

2
, β1 = 2a1, α2 =

m− 1

2
, β2 = 2a2

)
,

a1 =
k1σ

2
X

(n− 1)
(

σ2
X
n

+
σ2
Y
m

) =
k1

(n− 1)
(

1
n
+ 1/R

m

) =
k1mnR

(n− 1) (mR+ n)
,

a2 =
k2σ

2
Y

(m− 1)
(

σ2
X
n

+
σ2
Y
m

) =
k2

(m− 1)
(
R
n
+ 1

m

) =
k2mn

(m− 1) (mR+ n)
,

R =
σ2
X

σ2
Y

.

When R is known, we can choose

k1 = k1 (n,m,R) and k2 = k2 (n,m,R)

such that the resulting Z distribution has a simple form. By Remark 2.1, we know that when
β1 = β2 = β, then the pdf of the Z distribution is simplified. When we choose a1 = a2, that is,

k1mnR

(n− 1) (mR+ n)
=

k2mn

(m− 1) (mR+ n)
,

we obtain
k1
k2

=
n− 1

(m− 1)R
.

In fact, we can choose k1 and k2, such that the resulting Z distribution is a t (n+m− 2) distribution.
We have

W = a1χ
2
n−1 + a2χ

2
m−1 =

k1mnR

(n− 1) (mR+ n)

(
χ2
n−1 + χ2

m−1

)
=

k1mnR

(n− 1) (mR+ n)
χ2
n+m−2 =

χ2
n+m−2

n+m− 2
,
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which means that
k1mnR

(n− 1) (mR+ n)
=

1

n+m− 2
.

Thus,

k1 =
(n− 1) (mR+ n)

mnR (n+m− 2)
. (3.7)

Therefore,

k2 =
(m− 1)R

n− 1
k1 =

(m− 1) (mR+ n)

mn (n+m− 2)
. (3.8)

Consequently, if we let k1 and k2 be defined by (3.7) and (3.8), then

Z =
N√
W

∼ t (n+m− 2) .

One can easily check that the Z statistics with k1 and k2 defined by (3.7) and (3.8) is the same
as the T̃ statistics (3.4) given in [15]. In another words, the T̃ statistics (3.4) given in [15] can be
obtained through the Z distribution.

It is also easy to check that when

k1 =
1

n
and k2 =

1

m
,

a1 and a2 reduces to (3.5) and (3.6).

4 Simulation Studies

In this section, we provide the simulation studies for the hypothesis testing problems in Remark
3.1. We consider two groups of simulation studies. The first group considers µX = 1 and µY = 1.1,
for this group we would probably accept H0 : µX = µY . The parameters for group 1 are given in
Table 1. The second group considers µX = 1 and µY = 2, for this group we would expect rejecting
H0 : µX = µY and accepting H1 : µX ̸= µY . The parameters for group 2 are the same as those for
group 1 in Table 4, except that µY = 2.

Table 1. Parameters for group 1.

n = 10,m = 20, µX = 1, µY = 1.1

Case 1 σ2
X , σ2

Y are known, R = 2/3
X ∼ N (1, 2) and Y ∼ N (1.1, 3)

Case 2 σ2
X = σ2

Y = σ2 are unknown, R = σ2
X/σ2

Y = 1
X ∼ N (1, 1) and Y ∼ N (1.1, 1)

Case 3 σ2
X ̸= σ2

Y are unknown, R = σ2
X/σ2

Y = 2 is known
X ∼ N (1, 2) and Y ∼ N (1.1, 1)

Case 4 σ2
X ̸= σ2

Y are unknown, R = σ2
X/σ2

Y = 1/2 is known
X ∼ N (1, 1) and Y ∼ N (1.1, 2)

Case 5 σ2
X ̸= σ2

Y are unknown, R = σ2
X/σ2

Y is also unknown, R̂ = S2
X/S2

Y > 1

X ∼ N (1, 2) and Y ∼ N (1.1, 1), R̂ = S2
X/S2

Y ≈ σ2
X/σ2

Y = 2 > 1

Case 6 σ2
X ̸= σ2

Y are unknown, R = σ2
X/σ2

Y is also unknown, R̂ = S2
X/S2

Y < 1

X ∼ N (1, 1) and Y ∼ N (1.1, 2), R̂ = S2
X/S2

Y ≈ σ2
X/σ2

Y = 1/2 < 1

Before the simulation studies, we do some theoretical analysis of the error structure. By error,
we refer to the l∞ error (maximum absolute error) of the approximate solution (a vector) and the

12
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exact solution (a vector), which is not known since it is an infinite series and is replaced by the
approximate solution with very large truncation number K of the series. We assume two error
structures for the l∞ error. The first one is the polynomial error, which is the one we tried first.
The second one is the exponential error, which is the better error structure as the simulation studies
will exemplify.

For polynomial error, we assume that there exist positive constants C and β1, such that

l∞ (K) = C

(
1

K

)β1

.

Taking base 10 logs (of course one can try base e) on both sides of the above equation, we obtain

log10 l
∞ (K) = log10 C + β1 log10

1

K
.

Let

YK = log10 l
∞ (K) , β0 = log10 C, and XK = log10

1

K
.

Then
YK = β0 + β1XK . (4.1)

That is, YK and XK have a linear relationship. We then use the R function lm() to compute the
coefficients (β0, β1). Then C = 10β0 . To see whether the polynomial error structure is good for
the l∞ error of our problem, we can compute and record the sum of squares of the residuals S2

r,poly

(the smaller the better), the residual standard error σ̂poly (the smaller the better), and the multiple
R-squared R2

poly (the larger the better) of the linear model. Given K (e.g., K = 150), if we want
to know what is the predictive l∞ (K), we can simply calculate

l∞ (K) = C

(
1

K

)β1

= 10β0

(
1

K

)β1

=
10β0

Kβ1
. (4.2)

If we want to know for what value of K the predictive l∞ (K) is less than a specified value δ, e.g.,
0.001, we should let

l∞ (K) =
10β0

Kβ1
< δ.

Therefore, by elementary calculations, we get

K > 10
β0−log10 δ

β1 . (4.3)

For exponential error, we assume that there exist positive constants C and 0 < q < 1, such that

l∞ (K) = CqK .

Taking base 10 logs on both sides of the above equation, we obtain

log10 l
∞ (K) = log10 C +K log10 q.

Let
YK = log10 l

∞ (K) , β0 = log10 C, and β1 = log10 q.

Then
YK = β0 + β1K. (4.4)

That is, YK and K have a linear relationship. We then use the R function lm() to compute the
coefficients (β0, β1). Then

C = 10β0 and q = 10β1 .

13
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As in the polynomial error structure, we can compute and record S2
r,exp, σ̂exp, and R2

exp of the linear
model to see whether the exponential error structure is good for the l∞ error of our problem. Note
that for the two error structures, YK = log10 l

∞ (K), and thus the sum of squares of the residuals
(S2

r,poly and S2
r,exp) and the residual standard error (σ̂poly and σ̂exp) are comparable. Given K, the

predictive l∞ (K) is

l∞ (K) = CqK = 10β0+β1K . (4.5)

If we want to know for what value of K the predictive l∞ (K) is less than a specified value δ, e.g.,
0.001, we should let

l∞ (K) = 10β0+β1K < δ.

By elementary calculations, the above inequality reduces to

K >
log10 δ − β0

β1
. (4.6)

Now we plot the figures and display the results. Take group 1 case 3 for example. See Figure 4.
In Figure 4, the plot on the left of the first row is the cdf plot for various K. We see that as K
increases the cdf increases and approaches to a limit, which is the infinite series given by (2.4), the
line corresponding to K = 150 is very close to the limit and it is regarded as the true cdf. We also
see that for the line corresponding to K = 150, it tends to 0 (1) as z tends to −∞ (∞). The plot on
the right of the first row is the error plot for various K, where the line corresponding to K = 150
is regarded as the true cdf and thus it is not shown in the plot. We see that as K increases, the
error decreases to 0. For each K, the error is already 0 for the z values less than some negative
constant. The plot on the left of the second row is the polynomial loglog error plot. It exemplifies
a line given by (4.1). We see that the fitting of the line to the points is good. The red horizontal
line corresponding to δ = 10−3. (4.3) gives K > 104.2120, which means that when K ≥ 105, the
l∞ (K) will be less than the prescribed δ = 10−3. The plot on the right of the second row is the
polynomial error plot. It plots (4.2) for various K. We see that the predicted polynomial error
fits the points well. The red horizontal line corresponding to δ = 10−3. The red line crosses the
polynomial curve at K = 104.2120, which also means that when K ≥ 105, the l∞ (K) < δ = 10−3.
The plot on the left of the third row is the exponential log error plot. It exemplifies a line given by
(4.4). We see that the fitting of the line to the points is very good. The line fitting is much better
than that for the polynomial loglog error plot. The red horizontal line corresponding to δ = 10−3.
(4.6) gives K > 106.5275, which means that when K ≥ 107, the l∞ (K) < δ = 10−3. The plot on
the right of the third row is the exponential error plot. It plots (4.5) for various K. We see that
the predictive exponential error fits the points very well. The curve fitting is much better than
that for the polynomial error plot, as reassured by the three statistics (S2

r , σ̂, and R2) given later.
The red horizontal line corresponding to δ = 10−3. The red line crosses the exponential curve at
K = 106.5275, which also means that when K ≥ 107, the l∞ (K) < δ = 10−3.

The plots for other cases of group 1 are similar to Fig 1 and thus are omitted.

The P values, the K values corresponding to a δ = 10−3 error (Kpoly and Kexp), the sum of squares
of the residuals (S2

r,poly and S2
r,exp), the residual standard error (σ̂poly and σ̂exp), the multiple R-

squared (R2
poly and R2

exp), the predictive l∞ errors for K = 150 of the exponential error structure,
and the q values of the exponential error structure for the 6 cases of group 1 are given in Table 2.
From Table 2 we see that the P values are all greater than 0.9 >> 0.1 = α, therefore we accept
H0 : µX = µY . The K values corresponding to a δ = 10−3 error for the two error structures
are close. However, we should trust those K values calculated by the exponential error structure.
The three statistics: The sum of squares of the residuals S2

r (the smaller the better), the residual
standard error σ̂ (the smaller the better), and the multiple R-squared R2 (the larger the better)
for the exponential error structure are all better than those for the polynomial error structure.
Therefore, we guess that the l∞ (K) decays exponentially for K. This exemplifies Remark 2.6. The
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Fig. 1. The cdf plot, error plot, and l∞ error plots for group 1 case 3
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predictive l∞ errors for K = 150 (which is regarded as the true solution) of the exponential error
structure vary for different cases, from the most accurate case 6 (3.3× 10−87) to the least accurate
case 3 (1.8 × 10−5). Nevertheless, the predictive l∞ errors for K = 150 is less than 2 × 10−5 for
all 6 cases, and the solution corresponding to K = 150 can be reasonably regarded as the true
solution. The q values of the exponential error structure are related to the K values corresponding
to a δ = 10−3 error and the predictive l∞ errors for K = 150. A small q corresponds to a small K
and a small predictive l∞ error, and vice versa.

Table 2. Statistics for 6 cases of group 1

The plots of the 6 cases of group 2 are similar to those of group 1 and thus are omitted.

The statistics for the 6 cases of group 2 are given in Table 3. From Table 3 we see that the P
values are all smaller than 0.1 = α, therefore we reject H0 : µX = µY and accept H1 : µX ̸= µY , as
expected. The explanations of the other statistics in Table 3 are similar to those in Table 2 and
thus are omitted. Compare Table 2 and Table 3, we see that except the P values have been changed,
the other statistics remain the same. Because we only change the Y samples from Y 1

1 , Y
1
2 , . . . , Y

1
m to

Y 2
1 , Y

2
2 , . . . , Y

2
m, it only changes the sample mean Ȳ , the sample variances remain unchanged due to

set.seed(1). Therefore the R and R̂ = S2
X/S2

Y values remain unchanged, and α1, β1, α2, β2 remain
unchanged. Consequently, the cdf and its “derivatives” remain unchanged.

Table 3. Statistics for 6 cases of group 2

Finally, we give some discussions of the results obtained.

• The Z distribution is very flexible in the applications of the hypothesis testings of two normal
means. One statistics that obeys the Z distribution is applicable to all assumptions of σ2

X

and σ2
Y .

• We carry out two groups of simulation studies in this section. The first group considers
µX = 1 and µY = 1.1. For the first group, we see that the P values are all greater than
0.9 >> 0.1 = α, and thus we accept H0 : µX = µY . The second group considers µX = 1 and
µY = 2. For the second group, we see that the P values are all smaller than 0.1 = α, and
thus we reject H0 : µX = µY and accept H1 : µX ̸= µY , as expected.

• We assume two error structures for the l∞ error: The polynomial error structure and the
exponential error structure. The simulation studies exemplify that the exponential error
structure is the better error structure for the l∞ error.
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5 Conclusions

By introducing the Z distribution, we provide a total new way to tackle the Behrens-Fisher problem.
First, we define the SIG distribution and find its pdf, which is a generalization of the gamma
distribution. Three remarks considering the properties of the SIG distribution are given. Second,
we define the Z distribution and find its pdf, which is a generalization of the t distribution. Third,
we find the cdf of the Z distribution in Theorem 2.1. Three remarks considering the applicability,
the l∞ (K) error structure, and the programming of the cdf of the Z distribution are then given.
Note that the pdf of the SIG distribution, the pdf and cdf of the Z distribution are all infinite
series. Fourth, we apply the Z distribution in the hypothesis testings of two normal means. In
three different assumptions of the variances, namely, σ2

X and σ2
Y are known, σ2

X = σ2
Y = σ2 are

unknown, and σ2
X ̸= σ2

Y are unknown (the Behrens-Fisher problem), we find the pivots using the
Z distribution. Remark 3.1 shows that the Z distribution is very flexible in the applications of the
hypothesis testings of two normal means. One statistics that obeys the Z distribution is applicable
to all assumptions of σ2

X and σ2
Y . Remark 3.2 shows that we can define the Z distribution differently,

such that the resulting Z distribution has a simple form. Moreover, the T̃ statistics (3.4) given in
[15] can be obtained through the Z distribution. Finally, we provide the simulation studies for the
hypothesis testing problems in Remark 3.1. Two groups of simulation studies are considered. The
first group considers µX = 1 and µY = 1.1. For the first group, we see that the P values are all
greater than 0.9 >> 0.1 = α, and thus we accept H0 : µX = µY . The second group considers
µX = 1 and µY = 2. For the second group, we see that the P values are all smaller than 0.1 = α,
and thus we reject H0 : µX = µY and accept H1 : µX ̸= µY , as expected. In the simulation studies,
we assume two error structures for the l∞ error: The polynomial error structure and the exponential
error structure. The latter one is the better error structure as the simulation studies exemplify.
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