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Abstract

The forced convective boundary layer flow of electricationducting micropoli fluids has beel
investigated in the presence of magnetic field appliethénnormal direction of a sheet that shrinks or
stretches horizontally and thus causes the fluid moSedf-similar transforms have been employed to
convert the governing partial differential equations intdirary differential form. The resulting highly
non-linear model has been solved numerically with codingathimatica. Rigorous computational wark
has been carried out for sufficient ranges of the paramefethe study namely suction parame$e
stretching/shrinking parameter, magnetic parameteM, material constantsl;, d,, d; involved in
micromotionheat source parametBy radiation parametdr,, heat flux parameter and Prandtl number
Pr. The effects of these parameters on the physical qesntike skin friction coefficient, velocity,
temperature and micromotion are presented graphically.
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1 Introduction

The micropolar fluid theory pioneered by Eringen [1¢gents relatively an interesting and applied research
field. This model besides the generalization of Navier-&akodel takes into account the conservation of
angular momentum due to local micromotion of the fluid ipied. Researchers are engaged to explore
innovative results related to micropolar fluids flow problerhteat transfer in micropolar fluids was
discussed by Eringen himself [2]. Kasiviswanathan and @dB{ studied the magnetohydrodynamic flow
of a micropolar fluid and obtained the exact solution. Maggtal. [4] considered the flow of micropolar
fluids and solved problem by Laplace transformation. éeland Farrell [5] analyzed self-similar boundary
layer flow of a micropolar fluid in a porous channel where flow was driven by uniform mass transfer
through the channel walls. Haque et al. [6] worked on micropolaid fbehavior with steady
magnetohyrodynamic free convention and mass transfer flaghoke et al. [7] examined the magneto
hydrodynamic heat and mass transfer and thermal radiatidth, wiscous dissipation effects on
magnetohyrodynamic flow of micropolar fluid. Khana et al.if8lestigated the effects of heat transfer on a
peristaltic motion of Oldroyd fluid in the presence oflimed magnetic field.

Rashidi et al. [9] examined the steady, incompressiblelaméhar flow of micropolar fluids inside an
infinite channel. The steady two- dimensional viscous incorsjiies stagnation point flow on moving
boundary sheet was investigated by Mahapatra and Gupta [1K].eBal. [11] studied the effects of
chemical reaction and thermal radiation on unsteady fyseeection flow of a micropolar fluid past a semi-
infinite vertical plate embedded in a porous medium in theemee of heat absorption with Newtonian
heating. The flow and heat transfer phenomenon in a ptamefluid over a porous stretching sheet with
effect of magnetic field was considered by researchergtioned in [12-13]. For effects of the buoyancy
force and thermal radiation in MHD boundary layer viscogdktid over continuously moving stretching
surface in a porous surface see [14-15]. Raptis [16] sttaefiow of a micropolar fluid past a continuously
moving plate in the presence of radiation. Cortell [17] stutlieceffects of viscous dissipation and radiation
on the thermal boundary layer over a non-linear stregcéiireet.

The thermal radiation and heat generation effects on MHD ctweeftow are a new dimension added to
the study of stretching surface and has important apiplisain physics and engineering particularly in
space technology and high temperature processes. RecentbgnHetsal. [18] worked on mathematical
analysis and numerical solution for micropolar fluids fldue to a shrinking porous surface in the presence
of magnetic field and thermal radiation. Ajaz and Elangdi&h studied influence of an inclined magnetic
field and rotation on the peristaltic flow of a micropdlaid in an inclined channel. The effect of radiation
on heat transfer problem was studied by Hossain and TakhaH&€§an et al. [21] studied the micropolar
fluids near the stagnation point flow of electrically conductingdfdue to a surface with the boundary in
motion (stretching/shrinking). Ajaz and Elangovan [22gsented theoretic study on the electro-osmotic
flow of a micropolar fluid in a porous microchannel and coexgd the effects of the inclined magnetic field
and electro-osmotic parameters on the kinematics of thk flu

This paper considers forced convective boundary layer flowmicropolar fluids past a stretching or
shrinking sheet in the presence of prescribed heataftuixheat source with radiative effect. Anjali and Raj
[23] studied this problem for Newtonian fluids, without &ttin. We made a comprehensive mathematical
and computational analysis of the problem to examine the flowromotion and heat transfer
characteristics.

2 Mathematical M odel

We assume incompressible micropolar fluid with steady,dineensional, laminar hydromagnetic boundary
layer flow due to stretching/shrinking surface. A umfiomagnetic field of strengtB, is applied in the
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direction parallel to y-axis normal to the sheet lying tamtally along x- axis. The pressure gradient, the
body couple, induced magnetic field and viscous dissipaticn negligible. The velocity vector is
V =V(u, V) and spin vector igy = w (0, 0,w, ) and fluid temperature i, whereTW(x) is temperature at

the boundary of the surface agg is radiative heat flux. The schematic diagram ofdflilow is depicted in
Fig. 1.

Boundary Layer

stretching/Shrinking Sheet

Magnetic field Strength B,

Fig. 1. Sketch of flow model

Under the above assumptions, the equations governing the pr@Btemgen [1], Anjali and Raj [23])
become:

a_u+@ = 1
ox oy @
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wherep is densityo is the electrical conductivit)cIO is the specific heat capacity at constant pressuie,
dynamic viscosityk andy are additional viscosity coefficients for micropolliid andj is micro inertia K

is the thermal conductivity,q (t-7,) is heat generated or absorbed per unit volubhgs the applied

magnetic induction, the radiation tergn = _ﬂﬂ,k* is as mean absorption coefficieat, Stefan
" 38 oy

Boltzmann constant in the thermal radiatifris mean absorption coefficient. With the assumption THat

is expanded in Taylor series abautand neglecting higher order terms to ét= 4T°T - 3T".

The boundary conditions are:
—k‘;—T=qW= Dxn, w3=—mg—u, u= bx -y, wheny O
y y
5
w-0,u-0T->Tw asy- o ©)

where )V, is the suction/injection velocity amdis a boundary parameter{Om<1) that is used to model the

extent to which microelements are free to rotate invitiaity of the sheet. We assumed that microelements
do not rotate at the boundary=0).

Using similarity transformations:

The velocity components are described in terms of tearst functiony/ (X, )

u=2 =2 gy =xant). p =y, 2

ay X v
u=xaf', V:_\/Ef , C«%=a—iXL(/7),T—'|:0 =DTXH E—Ze(/?),
U2

Equation of continuity (1) is identically satisfied.

Substituting the above appropriate relation in equations (2), (34andd get

(l+d1)fm+d1Lr_Mfl: flz_ﬁ" (6)
d,L"+2d,d,L-d,d, f"= fL- fL @
(4+3R ) +3R Pr(fd — nfo+ B )= ( (8)

and the boundary conditions are

)
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160°T3,
—3 BK is

p

g
whereas M =[—JB§ is the magnetic parameteR = is Prandtl numberR, =

pa

V,
thermal radiation parametel = \/O— is the suction/injection parametds,= is heat source
av

p

*

L X
pC,
shrinking sheete> 0 is for stretching sheet aidis thermal conductivity.

parameter andh = is heat flux parameter arg-= Z is the velocity ratio parametez< 0 denotes

The dimensionless material constaats:

d1:£' dZ:L_, d3:L-
' pjal t pju

3 Results and Discussion

The numerical solution for the set of coupled nowdir differential equation (6) to (9) has beennaptied
because their analytical solution is difficult tod. For the numerical purpose, the order of tleegeations is

reduced by lettind '= p, p'= ¢, L'= g,6 '= w. The resulting set of ODE's is of first order whiish

then solved numerically using codes in MathematizaResults have been computed for sufficient ramnde
the parameters of interest. The fixed values of tparameters are chosen arbitrarily as

S=3,M=2,B=0.05,.Pr=0.71¢=-1n=2,d,=0.5,. d,=1.5,d,= 2. In particular, the
results for material paramete€l, d,, 0,describe the micropolar nature of the fluid. WHén=0andL=0,
the flow pattern becomes same as for Newtoniadglurhe results have been presented in the fotabtds
for skin friction coefficient f "(0) and initial boundary values cﬁ(l]) and in the form of plots for

velocity f ', temperaturedand micromotionL. Tables 1 and 2 respectively demonstrate the tee$ol

f "(0) and 9(0). Both of these tables show, a good comparisonrefgmt results with the previous
results by Anjali and Raj [23] and hence the vdiataof present results. Moreover, it is noticedtthalues
of f "(0)for micropolar fluids are less than the correspogdialuesf "(0). Also, the values 09(0) are

larger in magnitude in the presence of radiativet Beurce. Figs. 2 and 3 respectively demonstnateffect
of magnetic force field and suction at the boundBgth the physical parameters decrease in the ioaign

of the fluid flow velocity f ' when the surface is shrinking. But the velocitygmitude increases with
increase in the values of micropolar paramé‘i@nd shrinking parameter(e < 0) as shown in Figs. 4 and
5 respectively.

Fig. 6 shows the effect of stretching paramet@r> 0) on velocityf ', a sufficient increase in the velocity

is observed with increase in the values of paramefEhe graph for vertical velocityunder the effect o
is presented in Fig.7.

The non-dimensional micromotion functidn has been mapped in Fig. 8 to indicate the effdct o
stretching/shrinking parameter The micromotion increase in magnitude near thgase but opposite
behavior is seen away from the surface. Fig. 9 shitnat micromotion increases with increase in magne

force field. The effect of micropolar paramed;ron micromotionL is demonstrated in Fig. 10. The

micromotionL increases with increase in the value€laf
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Figs. 11 and 12 respectively shows the effect @it ls@urce parametd@ and heat flux parameter on
temperature functiof[/7] . Both these parameters cause an increase in tetaperfunctiord[s]] . But

increase in magnetic force causes decredgf as shown in Figs. 13. 14 shows that functigm]
decreases when the sheet is stretching and ifpissite to the shrinking phenomenon. Suction asthéace

and Prandtl numbeP cause decrease in temperature funcfipp] , as shown in Figs. 15 and 16

respectively. But the radiation paramela{ causes increase in temperature distribut®n] as depicted in
Fig. 17. The results are in accordance with thesiglay nature of the pertinent parameters.

Table 1. Comparison of resultsfor skin friction coefficient f "(0)

Anjali Present Present Parameters  Anjali Present Present Parameters
andRaj  results results andRaj  results results
(23] (Newtonian  (Micropolar (23] (Newtonian (Micropolar

fluids) fluid) fluids) fluid)
2.414214 2.41448 2.22547 S=2 3.302775 3.30281 3.02707 P=1
3.302775 3.30304 3.02707 S=3 3.302775 3.30281 3.02707 B=0
4.236068 4.23607 3.87095 S=4 3.302775 3.30281 3.02707 B =0.05
5.192583 5.19258 4.73721 S=5 3.302775 3.30281 3.02707 n=-2
6.162278 6.16228 5.61632 S=6 3.302775 3.30281 3.02707 n=-1
2.618034 2.61941 2.34215 M =0 3.302775 3.30281 3.02707 n=0
3.000000 3.00019 2.72747 M =1 3.302775 3.30281 3.02707 n=1
3.302775 3.32281 3.02707 M =2 1.718246 1.71826 1.57922 £=-05
3.561552 3.56156 3.28064 M =3 -1.83972  -1.83973 -1.69794 £=0.5
3.791287 3.79129 3.50446 M =4 -3.79128  -3.7913 -3.50476 £=1

Table 2. Comparison of resultsfor &(0)

Anjaliand Present Present Parameters  Anjali and Present Present Parameters
Raj [23] results results Raj [23] results results
without with without with
radiation radiation radiation radiation
0.591394 0.58854  0.700201 S=3 0.049805 0.0498052 0.0551581 p _
r

0.397867 0.397699 0.45519 S=4 0.584103 0.581567 0.689563 B=0
0.303990 0.303977 0.342502 S=5 0.591394 0.58854 0.700201 B =0.05
0.247320 0.247319 0.276476 S=6 0.595935 0.592869 0.706857 B =0.08
0.618505 0.614153 0.764516 M =0 0.599036 0.595818 0.711415 B=0.10
0.601904 0.598621 0.722533M =1 0.633833 0.628482 0.208448 B=0.3
0.591394 0.58854  0.700201 M =2 0.445710 0.44456 0.480708 nN=-2
0.583764 0.581163 0.685371M =3 0.473477 0.472065 0.518346 nN=-1
0.577819 0.575389 0.674433M =4 0.506004 0.504248 0.564727 nN=0
0.591394 0.58854  0.700201 p _q 79 0.544660 0.542442 0.623412 n=1

> =0.
0.405235 0.405038  0.474907 p _¢ 0.591394 0.58854 0.700201 €&=-1

r
0.259253 0.2592 0.297952 p _1 g5 0.522368 0.520858 0.589523 £=-0.5

> =1.
0.162542 0.162541 0.183719p 5 3 0.406670 0.406324 0.432782 £=1

> =2.
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Fig. 2. Theplot for curvesof f' under the effect of magnetic parameter M
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Fig. 3. Theplot for curvesof f' under the effect of suction/injection parameter S
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Fig. 4. Theplot for curvesof f' under the effect of micropolar parameter d;
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Fig. 5. Theplot for curvesof f' under the effect of shrinking parameter €
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Fig. 6. Theplot for curvesof f' under theeffect of stretching parameter €

S$=234,5

Fig. 7. The plot for curves of f under the effect of suction/injection parameter S
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Fig. 8. Theplot for curvesof L under the effect of stretching/shrinking parameter €
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Fig. 9. Theplot for curvesof L under the effect of magnetic parameter M
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Fig. 10. The plot for curvesof L under the effect of Micropolar parameter d;
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Fig. 11. The plot for curvesof @ under the effect of heat sour ce parameter B
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Fig. 12. The plot for curvesof @ under the effect of heat flux parameter n
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Fig. 13. The plot for curvesof @ under the effect of magnetic parameter M
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Fig. 14. The plot for curvesof @ under the effect of stretching/shrinking parameter €
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Fig. 15. The plot for curvesof @ under the effect of suction/injection S
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Fig. 16. The plot for curvesof @ under the effect of Prandtl number P,
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Fig. 17. The plot for curvesof @ under the effect of radiation parameter R,

4 Conclusion

This work has been carried out to examine the ofmatmghydrodynamic boundary layer flow and heat
transfer for micropolar fluids, owing to permeakleeet that shrinks or stretches linearly. The patréene
study of the problem involving a reliable compusatl technique produced several useful resultséatet
summarized as below:

+ Magnetic force field and suction at the boundamthbdecrease velocitf ' when the surface is
shrinking.

e The velocity magnitude increases with increase & Vhlues of micropolar parametdi and
shrinking parameter (¢ < 0).

«  The stretching parameter(c > 0) causes, a sufficient increase in the velogity

«  The micromotion increases with increase in magretite field and micropolar parametdi.

e The effect of heat source parameRrand heat flux parameter, both cause an increase in
temperature functiod /7] .

+ The increase in magnetic force causes decrea§ph.

« The function d[7]] decreases when the sheet is stretching but oppefitet is observed for
shrinking sheet.

+  Suction at the surface and Prandtl numbkrcause increase i[/]] .

+  The radiation parametdR, causes increase in temperature distributf] .
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