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Abstract

Data exploration tasks often require inversiorlarge matrices. The paper presents a new meth
matrices inversion, which uses the basis exchange algodtmtnolled by he convex and piecewisg
linear CPL) inversion criterion functionUsing basis exchange algorithms might increase the dioren
of the invertedmatrices and computationefficiency of the inversion taskBasis exchange algorithms
are based on the Gauss-Jordan transformation which is gséunl the famouSimplexalgorithm applied
in linear programming.

A4
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1 Introduction

The number of large data sets is increasing rapidly atrdeept time. Such data sets are being transformed
and explored in many ways for extracting useful infdiamawhich are then used for decision support
systems or in prognostic (regression) models [1,2]. Fssliéscriminant analysis is one of the fundamental
methods used in the decision support systems [3]. Findiad-igihefs solution involves the inversion of the
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covariance matrix. The inversion of the covariance matricolmes impossible by contemporary
computational procedures when the dimension of data vasttwe large. The classical regression model is
also based on the data matrix inversion and such model damcatculated when the dimensionality of data
vectors exceeds a certain limit [3].

New numerical techniques aimed at challenging invertinfargfe matrices are currently being developed
[4,5,6]. The basis exchange algorithms may also be exammnénils context [7,8,9]. The basis exchange
algorithms are based on the Gauss-Jordan transformation [10fafloeisSimplexalgorithm used in the
linear programming is also based on this transformation [10]reTlage many examples of linear
programming problems with a great practical importance viere based on large data sets and have been
solved by theéSimplexalgorithm.

The basis exchange algorithm specified directly to thek taf matrices inversion is proposed and
theroetically examined in the presented paper. The proposedlgerghm is controlled by theonvex and
piecewise linear §PL) inversion criterion function which is presented and aslyin the paper. The
presented paper contains, among others, the proof of the fundhhesdrem about conditions when the
minimum of theCPL inversion criterion function becomes equal to zero.

According to our research hypothesis, the proposed methodtwEesainversion should allow to increase
the dimensions of the inverted matrices. It is also expehtgdbmputational efficiency of a new procedure

of matrices inversion will be high. The proposed procedfinrmairices inversiorshould also be useful in
other tasks of exploratory analysis of large, high-diriwerad data sets.

2 MatricesInversion in Discriminant Analysis

Let us assume than objectsQ; (j = 1,....m) are represented by thredimensional feature vectoss =

[xjvl,...,&,n]T, or as points in the-dimensional feature spaé¢n] (x; O F[n]). Components jx of the feature
vectorx; represent numerical resultsrmmeasurements of different featuse$ = 1,....n) of thej-th object
()j (Xj,i D{O,l} or Xj,i 0 R)

We assume that the feature vectgrgj = 1,......,m) have been divided into two learning s€sandC,
labelled in accordance with the obje@gscategory(clasg wx (k =1, 2). The learning sef, containsmy
feature vectors;(k) assigned to thke-th categoryw,, wherem = m, + my:

Ce= {x(k} (0N @

Each learning sety can be characterized by the mean veptand the covariance matr®:

M = 2 xi(k) / mx (2)
and

Te= 5600 - 1) 40 - )T/ (M= 1) 3)
In accordance with the Fisherdiscriminant analysis, tHeature vector(k) from the learning se€ (1)
are projected on the lingw) in the feature space[n] (x O F[n]) defined by the parameter vectar =
[wy,...w]" (W O R") of the unit lenghty'w = 1):

I(w) = {x: x =tw, wheret O R} 4)

The feature vectors;(k) from the learning se€y (1) are projected on the pointgkx = WTX,-(k) of the line
I(w) (4). Similarly, the mean vectg (2) is projected on the poipi of the linel(w) (4):
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(W) = wipy (5)

As a result ofthe feature vectors(k) projection on the liné(w) (4), the covariance matri, (3) can be
replaced by the varian@g?(w) of the points KK = waJ-(k) projected on the lingw) (4):

oiw)= Z; ((K) - o)’ / (me— 1) (6)

The Fishe's criterion used fothe discriminative vectaw (4) choicecan be formulated in the below manner

[2]:
F(W)= (a(w) - Ko(W))? / (015(W) + 05°(W)) — max 7

In accordance with the Fishercriterion,the vectorw defining the lind(w) (4) should be selected in such a
way, that the distancpw) - to(w)| between the mean valuggw) (5) is as large as possibidile the sum
0,4(w) + 6,%(w) of thevariances,A(w) (6) is small.

The vectorwg defining the maximal value ohé Fishes criterion functionF(w) (7) can be given in the
below manner [3]:

We = Zpt (He - Ho) (8)
wherep,; andy, are the mean vectors (2) ahgis the pooled covariance matrix (3) [2]:

L= (-1t (M- 13/ (Mt mp - 2) )
The dimensionalityr - n of the pooled covariance matiZy (9) is defined by the dimensionof the feature

spaceF[n]. The inversion of the matrif, (9) becomes difficult oeven impossible in highly dimensional
feature spaceS[n].

3 MatricesInversion in the Classical Regression Model

Multivariate regression model can be based on the lindangatransformation of then - dimensional
feature vectors; = [x;1,....%]" (x; O F[n]) on the pointg;" of the below line t{’ O R") [2]:*

(OiOfL,....mY) & =t(x) =w'x; + wp (10)
wherew = [wy,...w;]" OR"and w O R
Properties of the model (10) depend on the vector ofnpeteas (eighty w and thethresholdwg. The
weights w and the threshold grare estimated from regression learning €tg he regression learning sets
C, can have the below structure [3]:

C={x;t}= {X1---s Xn: i}, wherej=1,..... ,m; (12)

We can assume here that eachmpfobjectsO; is characterized in the above $&tby values x of n
independentariables feature3 x, and by the observed valét; 0 R') of thedependentvariablet.

In case of the classical regression the parametensd vy of the model (10) are estimated on the base of the
learning seC, (11) in accordance with tHast squares methd@]. In this approach the sum of the squared
differences {{ - t;)? between the observed target variapkend the modelled variablg” (10) is minimized.
The optimal solutio” = [-wq , (W)"]" of such minimization problem can be given as [2]:
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V=YY"t (12)
where the matri¥ is constituted byn augmented feature vectors= [1, ij]Tof the dimensionality + 1:

Y= Y1 Yimd (13)
and (11)

t= [ty tm] " (14)

Computing (12) the optimal vectuar (12) includes the inversion of the mathiXY which has the dimension
equal to i +1) (n +1).

Similarly to the pooled covariance matiy (9), the inversion of the matriX'Y (12) becomes difficult or
even impossible in the highly dimensiofedture spac&[n]. The maximum size of the reversible mafx
(9) or Y'Y (12) depends on the used reversing method and their impktioentThe use of théasis
exchange algorithms gives a chance for inreasingiteeof the such matric&; (9) or Y'Y (12) which can
be computationally inverted in practice.

4 The Basis Exchange Algorithms

The basis exchange algorithm was initially proposed and dewkebpan efficient tool for designing linear
classifiers and examining linear separability of langeltidimensional data sets. The first version of the
basis exchange algorithm wdsscribed with details in the papers [7] and (&iginally, the basis exchange
algorithms aimed at an efficient minimization of the pptgan criterion function. The convex and piecewise
linear CPL) perceptron criterion function links the linear separabilagaept, which is fundamental in the
theory of neural networks [10,11,3]. Variety of tBPL criterion functions were proposed later and used for
controlling different types of basis exchange algoritfi@js

Thek-th basisBy is the squared, non-singular matrix with theowsb;(Kk):

By = [Da(K),..., ba(K)]" (15)
The dimension of each vectio(k) is equal tan.
The inverse matri8,* during thek-th stage can be represented in the below manner:

B = [r1(K),.... ra(K)] (16)
The vectord;(k) andr;(K) fulfil the below equations:

(Oii' 0{1,...,n)  bi®ri(K) = 1,and (17)
if i"#i, then b;(K)ri(K) =0

During thek-th stage of the the badig (15) is changed into the ba#lg.;. The matrixBy.; is created from
the matrixBy (15) through replacing theth row b,(k) by the new vector, taken from a given data mati@x
which containsn’vectorsz; with the dimension equal t@

Z={z:j=1,...m’} (18)

The exchange of thieth basis vectob;(k) (15) on the entry vecta results in the new bask.; (15) and
the new inverse matriBy.,;" = [ry(k+1),..., ro(k+1)] (16). The Gauss-Jordan transformation allows to
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compute efficiently the columns(k+1) of the matrixB,.;" on the basis of the colummgk) (16) of te
inverse matrixB, ", wherek = 0, 1,...K ([7], [8]):

r|(k+l) = (1 /r|(k)TZj(k)) r|(k) (19)
and

i) rilked) =ri(k) — (K Z0) 1iked) = (20)
ri#) — (1K) 200 / 1i(K) Zo) Ti(K)

The basis exchange algorithms are based on the Gauss-Jartdartnation (19), (20). The indéxf the
vectorb,(k) which is removed from the badig (15) during thek-th stage is determined by tkgit criterion
of a particular basis exchange algorithm. €hty criteriondetermines which vectay, from the se¥ (18)
enters the new basi.; (15). Thestop criterionallows to determine the final stalfeof the basis exchange
algorithm.

The basis exchange algorithms can be controlled by varioesi@nitfunctions belonging to the family of
the convex and piecewise lined€PL) criterion functions. TheCPL criterion functions allow defining
different goals for the basis exchange algorithms. CRe& criterion functions define thexit criterion the
entry criterionand thestop criterionof the basis exchange algorithms. These criterions are chrosenay
that ensures decreasing of the criterion function durinly si@gek of the algorithm.

The basis exchange algorithms allow to generate sequehsegiare, non-singular matricebage$ By
(k=1,...,K) in accordance with the Gauss-Jordan transformation [10].

Remarkl: The vectogy, cannot enter the new ba8igs. (15) if the below condition is met:
r()'ze =0 (21)
The above statement results directly from the Gausssddrdnsformation. There should be no division by

the zero in the equation (19). The condition (21) has alsotarestinggeometric interpretation as the move
in the parameter space along the parallel hyperianes {w: zj(k)TW =1} [9].

5Matrices Inversion through Basis Exchange

The Gauss-Jordan transformation (19), (20) can be used muhistage procedure aimed at the inversion
of the squared data

Z=[z,... 2] (22)
The squared data matizxis composed of the vectorsz; of the dimensionality.

The vectorg; (22) are equal to the columns of the pooled covariancexngt (9), if this matrix is expected
to be inversed for th&ishers solutionwg (8) used in the discriminant analysis. In the classegtession
model (12), the matri¥"Y (12) should be inversed. In this case, the mar{22) is composed of the+ 1
vectorsz; of the dimensionalityr + 1 and the vectors (22) are equal to the columns of the ma¥ly (12).

The proposed multistage procedure of the matr{22) inversion beginsk= 0) with the matrice8, (15)
andB,™ (16) which are equal to the unit mattix [ey,... , &]:

By = Bo_l == [el,... ,en] (23)
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In this case, the vectorg0) (16) are equal to the unit vecter€(i0{ 1,...,n}) ri(0) =&). The vectors;(k)
(16) are transformed in accordance with the dependenciearfdqR0) in successive stadek = 0, 1,...K)
on the basis of the indicé&) andj(k):

(1€0),i(0)), (1), j(1)),.-.., 1(K), J(K)) (24)
The indexI(K) of the vectom, leaving the basiBy (15) during thek-th stage should be determined by the
exit criterion. The index(k) of the vectorz (21) entering the basB., (16) should be determined by the
entry criterion. The vectag, (21) which enters the basis replaces the veggand constitutes thik)-th
row of the matrixBy., (16). The stop criterion determines the final stdge

During the multistage procedure of the makif21) inversion all the unit vectogsin the matrixB, (22) are
expected to be replaced by the vecip(1).

Remark2: The multistage procedure of the data maZrig22) inversionsucceeds if and only if eaait
vectorse in the matrixB, (23) is replaced by some vectr(22). In this case, the matrB " (16) obtained
after theK stages of the basis exchangedsal to the inverse matrik* (22):

Zt=B* (25)
During the multistage procedure of the baig15) transformationsot every exchange of the vece(22)

on the vectog; (21) is feasible Remarkl). Generallythe vectorz: (22) cannot be entered into the bdsjs
(16), if zyis a linear combination of such vectarswhich were introduced earlier into the ba3id9].

6 Thelnversion Criterion Function

The convex and piecewise line@RL) collinearity criterion functions have been defined receatigt used
for the purpose of extraction of collinear patterns frorhigh dimensional data set [10]. Simil@PL
criterion function could be useful also in the task of largarices inversion. Let us define for this purpose
the belowCPL penalty functiong;(w) on the basis of the vectorsz; (21) of the dimensionality [12]:
(0z,0Z (22)) (26)
1-z'w if z'ws<1
o) =11 -z'w| =
z'w-1if z'w>1

wherew = [wy,...,w,] " is the weight vecton [ RY).

The inversion criterion functio®;,(w) is defined here as the sum of BEL penalty functionsgp;(w) (26)
determined by tha vectorsz; from the squared matrix (22):

i) = Z ¢,() (27)
The inversion criterion functio®;,(w) is convex and piecewise line&@KL) as the sum of th€EPL penalty
functions ¢;(w) (26). The minimal valueb,,(w’) of the criterion function®,(w) (27) can be found

efficiently by using the basis exchange algorithm [8]:

(DW) q)inv(W)Z (Dinv(W*) = q:’inv* =20 (28)
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The minimal valueb;,(w") of the criterion functiorb,,,(w) (27) is useful in the process of the ma#i{22)
inversion.

In order to analyse properties of the inversion criteriorctfon ®;,,(w) (27) minimization the two types of
the dual hyperplands® andh? in then-dimensional parameter spaR®are introduced [10]. Each vectgr
(22) allows to define the below dual hyperpldiﬂe
(Oiof,...,nY) h'= {w:z'w = 1} (29)
Similarly, each of unit vectorss = [0,...,1,...,0] defines the below hyperplahg:
(Oio{1,...,nY) h°= {w:e'w =0} ={w: w;= 0} (30)
wherew = [wy,...w]" OR"
Let us consider thieth subseg, of n linearly independent vectors(22) ande (30):
Sc={z:j03} O {e:i0l} (31)
The setSis composed of feature vectorg; (j O J) andn - r, unit vectorsg (iOl).
The intersection point of thg hyperplanesh! (29) defined by the vectors (j0J) and the n - ry
hyperplane$® (30) defined by the unit vectoes(il,) from the subse®, (31) is called thé-th vertexw in
the parameter spa&®. The below linear equations can be linked to the veviex
(003 w'z=1 (32)
and
(QiolL) w'e=0 (33)
The equations (32) and (33) can be represented in the fioatnix
B«wk=1=[1,...,1,0,....0" (34)
where the square, nonsingular maBijxis thek-th basislinked to the vertexvy:
B = [Ziws-- Zic Eigrcs1yr--- Bim] | (35)
and (16)
Wi =Bt =ry(K) +... 4 r(K) (36)

It can be proved that the minimal valdg,, (28) of the convex and piecewise linear criteri@P()
function ®;,(w) (27) can be found in one of the vertiegs(36) [9,10]:

([Wk*) (DW) q)inv(W) 2 cDinv(Wk*) = q)inv* >0 (37)

The basis exchange algorithms allow to find efficientlg minimal value®i,(w,) of the CPL criterion
functions®;,(w) (27) even in the case of high dimensional matré22).

The inversion criterion functio®;,(w) (27) allows to precise the exit criterion, the entiyecion and the
stop criterion according to the selected strategy @ftlins function minimization. These criteria should be
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chosen in a such manner that the functigp(w) (27) decreases maximally during each learning lst&jne
steepest descent strateigyoften used in the tasks of t6®L criterion functions minimization [9].

7 The Minimal Value of thelnverson Criterion Function

Let us assume that the squared matr{22) is reversible, so the mati&x' = [ry,..., r,] (16) exists. In this
case, the below linear equation (34) has well definadisalw;:

Zwy=1=[1,...1] (38)
and
WZZZ'11=I‘1+...+I‘n 390

Lemmal: If the data matri (21) is reversible, then each of thelual hyperplanebj1 (29) passes through
the pointwy (39).

This Lemma results directly from the set of the linegwations (38). Thieth equation in the set (38) has the
form z'w; = 1. This means that thieh hyperplanéy (28) passes through the poims (39). Therefore the
solutionwy; (39) is the point of intersection of all the hyperplahé$28) defined by the vectorsz; (22). It
also means that the poing (39) is one of the verticas, (36).

Lemmaz2: If the squared matri¥ (22) is reversibleZ™ exists), then the valu®,,(w) of the criterion
function®;,(w) (27) in the vertexv; (39) is equal to zero:

Piny(Wz) = 0 (40)

Proof: If the j-th hyperplaneh (29) passes through the poimg (39), thenz,'w, = 1. This means that the
value ¢;(wy) of thej-th penalty functiong®;(w) (26) is eqal to zero in this poinp;(w;) = 0). In accordance

with the Lemmal, each hyperplang® (29) passes through the vertex (39). So, each penalty functions
d;(w) (26) and the inversion criterion functidn,(w) (27) are equal to zero in the poimt (39). O

Theoreml: The minimal valueb,,(wy) (37) of the inversion criterion functio®;,(w) (27) defined on
elementg; of the data matri¥ (22) is equal to zero if and only if the mat#xs reversible 2! exists).

Proof: As follows from theLemma2, the minimal valuab;,(wy) (28) is equal to zero if the data matrix
(21) is reversible. In this case there exists such optigraéxw, = w, (39) that the minimal valu®;,,(w,)

(37) is equal to zero. We can also remark that the \@|uyéw,) of the criterion functior®;,(w) (27) is
greater than zero in any other vertex (36):

(Dwk’¢wk*) cDinv(Wk') >0 (41)

If the data matriXZ (22) is not reversible, then there does not exist a werte(36) through which all the
hyperplanesi* (29) pass. If th¢-th hyperplaney* (29) does not pass through the vergx(36), then the
penalty functiorp; (w) (26) is greater than zero in the powt (¢;(wy) > 0). As a resul®;, (wy) > 0.

The minimal valueb;,(wi ) (28) of the inversion criterion functiohy,,(w) (27) can be found by using the
basis exchange algorithm based on the Gauss-Jordan tranafom{ag), (20) of the inverse matridgg® =
[r1(K),..., rn(K)] (16) during successive stepgk = 1,...,K). If the data matriZ (22) is reversible, then after
a finite numbelK (K = n) of the stepk the optimal vertexv” constituting the minimal valu®;,(w,’) = 0
(28) is reached. In this case, the maBix* resulting from the Gauss-Jordan transformations (29), ¢f
the matrice®,* is equal to the inverse data maffix22) @ = Bc™).
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One of the useful properties of the minimal vaiig(w, ) (37) of the inversion criterion functiof;,,(w)
(27) is theirinvariancein respect to the reversible, linear transformatiotheh vectorsz; constituting the
columns of the data matrix (22):

cDinv'(Wk') = clDinv(Wk*) (42)

Where the symbab;,,/(wy') stands for the minimal value (37) of the criterion functdggy'(w) (27) defined
on the transformed vectozs:

(O0j0{1,...,n}) z'= Az, where the matria™ exists (43)
The invariance property (42) results from the below etjesli
(O0{1,...,n}) (W)'z'= w'z, wherew' = A*w (44)

So the penalty functiongs’'(w') (26) defined on the transformed vectgfg43) have the same values as the
functionsé;(w) in the pointw:

(LI0{L,....nY) ¢'(W') = ¢i(w) (45)
The linear transformation (43) of thevectorsz; includes their scaling:
Oj0{1,...,n}) z'= sz, wheres #0 (s ORY) (46)

We can also remark that the minimal vada-gv(wk*) (37) of the criterion functio®;,(w) (27) is invariant to
the scaling of the thresholdsin the hyperplaneis® (29).

(Oi0{,....nY) h¥= {w:z'w = s, wheres # 0 (§ 0 R")} (47)

The above invariance properties (42) of the minimal vaie,) (37) of theCPL criterion functiond(w)
(27) encourage the use of this type of functions and the lashange algorithms also for the efficient
solution of large, high dimensional systems of linear egug{7]:

Aw=b (48)

whereA is the matrix of dimensiom nandb = [bl,...,t}n]T 0O R"is them-dimensional vector.

8 Concluding Remarks

The convex and piecewise line@RL) inversion criterion functior®;,(w) (27) has been defined here on
the m vectorsz constituting the matrix (22). TheCPL criterion function®d;,(w) (27) allows to select the
exit criterion, the entry criterion and the stop criterionthef basis exchange algorithm aimed at the reversing
of the matrixZ. The revers@& * matrix can be computed efficiently by using the bastharge algorithm. In
this approach, the numbkKr(24) of the basi8, (35) exchanges is not greater than the dimensionalify

the feature spade[n] (K < n).

The convex and piecewise line&HRL) criterion functiondin, (W) (27) can serve to solve also other problems
related to the inversion of high dimensional matrie€22). In accordance with thigheoreml, the minimal
value i, (wy ) (37) of the functionp;,(w) (27) is equal to zero if and only if the inverse makixexists If

the matrixZ is singular, the minimal valuei./(w ) (37) is greater than zere{,(w, ) > 0). The minimal
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value di(wy ) (37) can be used as the detector of the mat(x2) singularity. Such measure of singularity
degree of the matrix (22) has useful invariance property (42).

The relaxed linear separability methd?LQ of feature subset selection has been developed recertifye on
basis of theCPL perceptron criterion function [13].HE perceptron criterion functiois used in theRLS
method for efficient designing of linear classifierslao evaluate the linear seprabilty of learning sets in
different feature subspacegn,] (FJnJd O F[n]). One of the uses of #@RLSmethod was to extract optimal
subsets of genes from tBeeast cancedata set [14]. ThBreast Cancedata set contains descriptions of 46
cancer and 51 non-cancer women. Each woman in this sethaeecterized by = 24481 genes. THRLS
method allowed to select the optimal subsem;,0f 12 genes and such linear combination of these selected
genes, which correctly (100%) distinguish cancer from reoveer women in this set. In this examptes t
dimensionn - n of the inverted matricealmost reached the numben®[14]. It's possible to include the
inversion criterion functiond;,(w) (27) into RLS method. Such inclusion could increase the range of
applications of th&@LSmethod.

The presented here method of large matrices inversiorsedban the basis exchange algortihm linked to
minimization of theCPL inverse criterion functio®;,(w) (27). Thebasis exchange algortihms controlled
by other types of th€PL criterion functions have been used in many tasks of datangnand machine
learning [9]. For example, the optimal gene subset selegioblem has been solved efficiently in
accordance the mentioned ab&®4eSmethod [14]. It has been shown experimentally thabdes exchange
algortihms can supplgffective tools for the exploration of large, multivaeialata sets.

The proposed method of matrices inversamuld also be useful in other chalenging computational tasks.

For example,computations ofpseudo inverse covariance matrices in undersampled datacadd be
performed this way [15].
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