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Abstract

Aims/ Objectives: To identify some new classes of graceful diameter six trees using component
moving transformation techniques.
Study Design: Literature Survey to our findings.
Place and Duration of Study: Department of Mathematics,C.V. Raman College Of
Engineering,Bhubaneswar, India, between June 2014 and September 2016.
Methodology: Component Moving Transformation.
Results: Here a diameter six tree is denoted by (a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr)
with a0 as the center of the tree, ai, i = 1, 2, . . . ,m, bj , j = 1, 2, . . . , n, and ck, k = 1, 2, . . . , r are
the vertices of the tree adjacent to a0; each ai is the center of some diameter four tree, each bj is
the center of some star, and each ck is some pendant vertex. This article gives graceful labelings
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to a family of diameter six trees (a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr) with diameter
four trees incident on ais possess an odd number of branches comprising of six different
combinations of odd, even, and pendant branches. Here a star is called an odd branch if its
center has an even degree, an even branch if its center has an odd degree, and a pendant branch
if its center has degree one.
Conclusions: Our article finds many new graceful diameter six trees by component moving
techniques. However, the problem that all diameter six trees are graceful is still open and we
conclude that one can not give graceful labelings to all diameter six trees by component moving
techniques.

Keywords: Graceful labeling; diameter six tree; component moving transformation; transfers of the
first and second types; BD8TF.

AMS classification: 05C78.

1 Introduction

By a graph labelling we mean an assignment of integers to the vertices or edges or both, subject
to certain conditions. The concept of graph labelling originated in in the 1960s while attempting
to resolve the problems involving decomposition of graphs into smaller graphs. In last five and
half decades many new graph labelling techniques have evolved and more than 1500 research
articles are available so far in this area. Labelled graphs have also been implemented in many
problems in applied sciences and Engineering such as - network addressing, X - ray crystallography,
coding theory, rulers, radar and missile guidance, constrained satisfactory problems, radio antenna
problems [1], [2]. In this article we have undertaken a study on a very fundamental and widely used
graph labelling, namely, graceful labelling. Graceful labeling was introduced by Ringel [3], Kotzig
[4], and Rosa [5] and it is defined as follows.

Definition 1.1. [6], [5] A graph G with q edges is said to be graceful if there is an injection f from
the vertices of G to the set {0, 1, 2, 3, . . . , q} such that set of absolute values of difference of the
vertex labels of all the edges of G is the set {1, 2, 3, . . . , q}.

The concept of graceful labeling came into existence while trying to resolve an conjecture due to
Ringel [3] which states that ”K2n+1 decomposes intro 2n + 1 isomorphic copies of a tree with n
edges.” Rosa [5] proved that Ringel’s conjecture holds good if the tree is graceful. Rosa [5] also
conjectured that all trees are graceful, which is popularly known as graceful tree conjecture. Despite
of many efforts in past five decades the graceful tree conjecture remains unresolved so far.

From the available literature and most up to date surveys on graph labeling problems (Edwards
and Howard [7], Gallian [6], Hrnciar and Havier[8], Robeva [9], Rosa [5]) it has been established
that all trees up to diameter five are graceful. Here we give graceful labelings to certain classes of
diameter six trees. Here we first give a representation of a diameter six tree as given below.

Definition 1.2. [10], [11], [12] A diameter six tree can be represented as (a0; a1, a2, . . . , am;
b1, b2, . . . , bn; c1, c2, . . . , cr), where a0 is the center of the tree; ai; bj , and ck are the vertices of the
tree adjacent to a0 such that each ai is the center of some diameter four tree, each bj is the center
of some star, and each ck is some pendant vertex. It is readily observed that for a diameter six
tree with the above representation there are at least two neigbours of a0 which are the centers of
diameter four trees. The notation D6 shall henceforth represent a diameter six tree.
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A combination of branches incident on any ai, 0 ≤ i ≤ m is a triple (x, y, z), where x, y, and
z denote the number of odd, even, and pendant branches, respectively, incident on ai. Here the
symbols e and o denote a non-zero even number and an odd number, respectively. For example:
(o, 0, e) means an odd number of odd branches, no even branch, and an even number of pendant
branches. If in a triple e or o appears more than once then it does not mean that the corresponding
branches are equal in number, for example (o, o, e) does not mean that the number of odd branches
is equal to the number of even branches.

As far as diameter six trees are concerned banana trees are known to be graceful [13], [14], [7], [6],
[15], [16], [9], [17], [18], [19]. Chen et. al. [14] defined a banana tree as a tree obtained by connecting
a vertex v to one leaf of each of any number of stars (v is not in any of the stars). Chen et. al.
[14] conjectured that banana trees are graceful. Bhatt Nayak and Deshmukh [13], Murugan and
Arumurugan [16] and Vilfred [19] gave graceful labelings to different classes of banana trees.

Sethuraman and Jesintha [15], [17], [18] proved that all banana trees (graphs obtained by joining a
vertex to one leaf of each of any number of stars by a path of length of at least two) are graceful.
Mishra and Panda [10], [11], and [12] developed some classes of graceful diameter six trees.

Applying the techniques of Hrnciar and Havier [8], Mishra and Panda [20], and Mishra and
Panigrahi [21], [22] here we give graceful labelings to some new classes of diameter six trees
(a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr) with each ai, i = 1, 2, . . . ,m1,m1 ≤ m, is
attached to (o, 0, 0) and the branches incident on ai, m1 + 1 ≤ m, satisfies one of the following
conditions.

1. Each ai, m1 +1 ≤ m2 is attached to (o, 0, e) (or (o, e, 0)). Each ai, m2 +1 ≤ m3 is attached to
(o, e, e) or (e, o, 0). Each ai, m3+1 ≤ m4 is attached to (e, o, e) or (e, o, 0). Each ai, m4+1 ≤ m5

is attached to (0, o, e) or (e, e, o) and each of the remaining a′
is is attached to (e, 0, o) or (0, e, o).

2.Each ai, m1 + 1 ≤ m2 is attached to (o, 0, e) (or (o, e, 0)). Each ai, m2 + 1 ≤ m3 is attached to
(o, e, e). Each ai, m3 +1 ≤ m4 is attached to (o, o, o) and each of the remaining ais is attached to
(e, 0, o).
3.Each ai, m1 + 1 ≤ m2 is attached to (o, 0, e). Each ai, m2 + 1 ≤ m3 is attached to (o, o, o).
Each ai, m3 + 1 ≤ m4 is attached to (e, e, o) and each of the remaining ais is attached to (e, 0, o)
or (0, e, o).

2 Preliminaries

Definition 2.1. [8], [20], [21], [22] For an edge e = {u, v} of a tree T , we define u(T ) as that
connected component of T − e which contains the vertex u. Here we say u(T ) is a component
incident on the vertex v. If a and b are vertices of a tree T , u(T ) is a component incident on
a, and b ̸∈ u(T ) then deleting the edge {a, u} from T and making b and u adjacent is termed as
the component u(T ) has been transferred or moved from a to b. In this paper by the label of the
component “u(T )” we mean the label of the vertex u. Let T be a tree and a and b be two vertices of
T . By a → b transfer we mean that some components from a have been moved to b. If we consider
successive transfers a1 → a2, a2 → a3, a3 → a4, . . . we simply write a1 → a2 → a3 → a4 . . .
transfer. In the transfer a1 → a2 → . . . → an−1 → an, each vertex ai, i = 1, 2, . . . , n− 1 is called
a vertex of transfer. Let T be a labelled tree with a labeling f . We consider the vertices of T whose
labels form the sequence (a, b, a−1, b+1, a−2, b+2) (respectively, (a, b, a+1, b−1, a+2, b−2)). Let
a be adjacent to some vertices having labels different from the above labels. The a −→ b transfer
is called a transfer of the first type if the labels of the transferred components constitute a set of
consecutive integers.
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The a −→ b transfer is called a transfer of the second type if the labels of the transferred components
can be divided into two segments, where each segment is a set of consecutive integers. A sequence
of eight transfers of the first type a → b → a − 1 → b + 1 → a → b → a − 1 → b + 1 → a − 2
(respectively, a → b → a + 1 → b − 1 → a → b → a + 1 → b − 1 → a + 2), is called a backward
double 8 transfer of the first type or BD8TF a to a− 2 (respectively, a to a+ 2).
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Fig. 1. The graceful tree in (b) is obtained from the graceful tree in (a) by carrying
out a sequence of transfers consisting of 22 → 1 → 21 transfers of the first type,

followed by the BD8TF 21 to 19, followed by 19 → 4 transfer of the first type, and
finally 4 → 18 → 5 transfers of the second type, respectively

Theorem 2.1. [20], [21], [22] In a graceful labeling f of a graceful tree T , let a and b be the
labels of two vertices. Let a be attached to a set A of vertices (or components) having labels
n, n+1, n+2, . . . , n+p (different from the above vertex labels), which satisfy (n+1+i)+(n+p−i) =
a+ b, i ≥ 0 (respectively, (n+ i) + (n+ p− 1− i) = a+ b, i ≥ 0). Then the following hold.

(a) By making a transfer a → b of first type we can keep an odd number of components at a
from the set A and move the rest to b, and the resultant tree thus formed will be graceful.

(b) If A contains an even number of elements, then by making a sequence of transfers of the
second type a → b → a− 1 → b+ 1 → a− 2 → b+ 2 → . . . (respectively, a → b → a+ 1 →
b− 1 → a+2 → b− 2 → . . .), an even number of elements from A can be kept at each vertex
of the transfer, and the resultant tree thus formed is graceful.

(c) By a BD8TF a to b+ 1 (respectively, b− 1), we can keep an even number of elements from
A at a, b, a − 1, and b + 1 (respectively, a, b, a + 1, and b − 1), and move the rest to a − 2
(respectively, a+ 2). The resultant tree formed in each of the above cases is graceful.

(d) Consider the transfer R′ : a → b → a−1 → b+1 → . . . → . . . (respectively, a → b → a+1 →
b − 1 → . . . → . . .), such that R′ is partitioned as R′ : T ′

1 → T ′
2, where T ′

1 is sequence
of transfers consisting of the transfers of the first type and BD8TF and T ′

2 is a sequence
of transfer of the second type. The tree T ∗∗ obtained from T by making the transfer R′ is
graceful.

Lemma 2.2. [8] If g is a graceful labeling of a tree T with n edges then the labeling gn defined as
gn(x) = n− g(x), for all x ∈ V (T ), called the inverse transformation of g is also a graceful labeling
of T .
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3 Results

Theorem 3.1. If degrees of ai and bj are even, for i = 1, 2, 3, . . . ,m; j = 1, 2, 3, . . . , n, and the
centers ai, i = 1, 2, . . . , m, of diameter four trees are attached to combinations as shown in Table
1 then D6 given by the following are graceful.

(a): D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr}.
(b): D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn}.
(c): D6 = {a0; a1, a2, . . . , am; c1, c2, . . . , cr} with m odd.
(d): D6 = {a0; a1, a2, . . . , am} with m odd.

Table 1. Diameter Six Trees of Theorem 3.1.

Cases
↓

ai, 1 ≤ i ≤
m1

ai, m1 +
1 ≤ i ≤ m2

ai, m2 +
1 ≤ i ≤ m3

ai, m3 +
1 ≤ i ≤ m4

ai, m4 +
1 ≤ i ≤ m5

ai, m5+1 ≤
i ≤ m6 =
m

(a) (o, 0, 0) (o, e, 0) (e, o, 0) (e, o, e) (0, o, e) (0, e, o)

(b) same as (a) same as (a) same as (a) same as (a) (e, e, o) same as (a)

(c) same as (a) same as (a) (o, e, e) same as (a) same as (b) same as (a)

(d) same as (a) same as (a) same as (a) same as (a) same as (b) (e, 0, o)

(e) same as (a) same as (a) same as (c) same as (a) same as (b) same as (d)

(f) same as (a) (o, 0, e) same as (c) same as (a) same as (b) same as (d)

(g) same as (a) same as
(f)

same as (c) same as (a) same as (a) same as (a)

(h) same as (a) same as
(f)

same as (c) same as (a) same as (b) same as (a)

(i) same as (a) same as (a) same as (c) same as (a) same as (a) same as (a)

Proof (a): Case - I Let m + n be odd. Let |E(D6)| = q and deg(a0) = m + n = 2k + 1.
Proceed as per the following steps.

1. Remove the pendant vertices adjacent to a0 and represent the new graceful tree byD
(1)
6 . Consider

the graceful tree G as represented in Fig. 2.
2. Define integers α

(j)
i , for i = 1, 2, . . . ,m, j = 1, 2, 3, 4, 5, as per the following.

For 1 ≤ i ≤ m1: 2α
(1)
i + 1 = oi = deg(ai)− 1.

For m1+1 ≤ i ≤ m2: For the cases (a), (b), (c), (d), (e), and (i): 2α
(1)
i +1 = oi, 2[α

(2)
i +α

(3)
i +1] =

ei. For the cases (f), (g), and (h): 2α
(1)
i + 1 = oi, 2[α

(4)
i + α

(5)
i + 1] = pi.

For m2 + 1 ≤ i ≤ m3: For the cases (a), (b) and (d): 2[α
(1)
i + α

(2)
i + 1] = oi, 2α

(3)
i + 1 = ei.

For the cases (c), (e), (f), (g), (h), and (i): 2α
(1)
i + 1 = oi, 2[α

(2)
i + α

(3)
i + 1] = ei, and

2[α
(4)
i + α

(5)
i + 1] = pi.

For m3 + 1 ≤ i ≤ m4: 2[α
(1)
i + α

(2)
i + 1] = oi, 2α

(3)
i + 1 = ei, and 2[α

(4)
i + α

(5)
i + 1] = pi.

For m4 + 1 ≤ i ≤ m5: For the cases (a), (g), and (i): 2α
(3)
i + 1 = ei and 2[α

(4)
i + α

(5)
i + 1] = pi.

For the cases (b), (c), (d), (e), (f), and (h): 2[α
(1)
i + α

(2)
i + 1] = oi, 2[α

(3)
i + α

(4)
i + 1] = ei, and

2α
(5)
i + 1 = pi.

For m5 + 1 ≤ i ≤ m6 = m: For the cases (a), (b), (c), (g), (h), and (i): 2[α
(3)
i + α

(4)
i + 1] = ei,
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and 2α
(5)
i + 1 = pi. For the cases (d), (e), and (f): 2[α

(1)
i + α

(2)
i + 1] = oi and 2α

(5)
i + 1 = pi.

3. Let A = {k+ 1, k+ 2, . . . , q− k− r− 1}. Observe that (k+ i) + (q− r− k− i) = q− r. Assign
the labels to ai, 1 ≤ i ≤ m and bj , 1 ≤ j ≤ n as follows.

xi =

{
q − r − i−1

2
if i is odd

i
2

if i is even
with xi is the label of ai, for i = 1, 2, . . . ,m and xm+j is the

label of bj , for j = 1, 2, . . . , n.

4. Define an integer t as t = am4+1 for the cases (a) and (g), t = am5+1 for the cases (b) and (c),
and t = b1 for the cases (d), (e), and (f). Observe that the transfer T1 : a1 → a2 → a3 → a4 →
a5 → a6 → . . . → t and the set A satisfy the hypothesis of Theorem 2.1. Carry out the transfer
T1 consisting of the successive transfers of the first type and keep 2α

(1)
i + 1 elements of A at the

vertices ai of T1. Let A1 be the set of vertices of A that have come to the vertex t.

5. Define an integer t1 as t1 = am4 for the cases (a) and (g), t1 = am5 for the cases (b) and (c),
and t1 = am for the cases (d), (e), and (f). Carry out the transfer t −→ t1 of the first type and
bring back all the elements of A1 to t1. Obviously, the new tree thus formed, say G2, is graceful.

6. Define the transfer T2 as follows. T2 : am4 → am4−1 → . . . → am1+1 → am1 for the cases (a)
and (i); T2 : am5 → am5−1 → . . . → am1+1 → am1 for the cases (b) and (c); T2 : am → am−1 →
. . . → am1+1 → am1 for the cases (d) and (e); T2 : am → am−1 → . . . am2+1 → am2 for the case
(f); T2 : am4+1 → am4 → . . . → am2+1 → am2 for the cases (g); T2 : am5 → am5−1 → . . . →
am2+1 → am2 for the case (h). Observe that the set A1 and the labels of the vertices of T2 satisfy
the hypothesis of Theorem 2.1. Carry out the transfer T2 consisting of successive transfers of the
first type, keeping 2α

(2)
i + 1 elements of A1 at the vertices ai of T2. By Theorem 2.1 the new tree,

say G3, thus formed is graceful. Let A2 be the set of vertices of A1 which have been transferred to
the last vertex of T2.

7. Execute the transfer am1 → am1+1 (for the cases (a), (b), (c), (d), (e), and (i)) or am2 → am2+1

(for the cases (f), (g), and (h)) and bring back all elements of A2 to am1 or am2 .

8. Define the transfer T3 as follows. T3 : am1+1 → am1+2 → am1+3 → . . . → am → b1 for
the cases (a), (b), (c), and (i); T3 : am1+1 → am1+2 → am1+3 → . . . → am5 → am5+1 for
the cases (d) and (e); T3 : am2+1 → am2+2 → am2+3 → . . . → am5 → am5+1 for the case (f);
T3 : am2+1 → am2+2 → am2+3 → . . . → am → b1 for the cases (g) and (h). Observe that the
transfer T3 and the set A2 satisfy the hypothesis of Theorem 2.1. Execute the transfer T3 consisting
of the successive transfers of the first type and keep 2α

(3)
i + 1 elements of A2 at the vertices ai of

T3. Let A3 is the set of vertices of A2 that have come to the vertex b1 or am5+1 as the case may be.

9. Execute the transfer b1 −→ am (or am5+1 → am5) of the first type and bring back all the
elements of A3 to am (or am5). Obviously, the new tree thus formed, say G5, is graceful.

10. Define the transfer T4 as follows. T4 : am → am−1 → am−2 → am−3 → . . . → am3+1 →
am3+1 → am3 for the cases (a), (b), and (i); T4 : am → am−1 → am−2 → am−3 → . . . → am2+1 →
am2+1 → am2 for the case (c); T4 : am5 → am5−1 → am5−2 → am5−3 → . . . → am3+1 → am3+1 →
am3 for the cases (d); T4 : am5 → am5−1 → am5−2 → am5−3 → . . . → am2+1 → am2+1 → am2

for the cases (e); T4 : am5 → am5−1 → am5−2 → am5−3 → . . . → am1+1 → am1+1 → am1 for
the case (f); T4 : am → am−1 → am−2 → am−3 → . . . → am1+1 → am1+1 → am1 for the cases
(g) and (h). Observe that the set A3 and the labels of the vertices of T4 satisfy the hypothesis of
Theorem 2.1. Carry out the transfer T4 consisting of successive transfers of the first type, keeping
2α

(4)
i +1 elements of A3 at the vertices ai of T4. By Theorem 2.1 the new tree, say G6, thus formed

is graceful. Let A4 be the set of vertices of A3 which have been transferred to the last vertex of T4.
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11. Execute the transfer am1 −→ am1+1 (for the cases (f), (g), and (h)), am2 −→ am2+1 (for the
cases (c) and (e)), or am3 −→ am3+1 (for the cases (a), (b), (d), and (i)) of the first type and bring
back all the elements of A4 to am1+1, am2+1, or am3+1 as the case may be. Obviously, the new tree
thus formed, say G7, is graceful.

12. Now consider the transfer T5 : al+1 → al+2 → al+3 → . . . → am → b1 → b2 → . . . → bn → k+1,
where l = m1 for the cases (f), (g), and (h), l = m2 for the cases (c) and (e), and l = m3 for the
cases (a), (b), (d), and (i). Carry out the transfer T5 consisting of successive transfers of the first

type keeping 2α
(5)
i + 1 elements of A4 at the vertices ai and the desired odd number of vertices at

bj , j = 1, 2, . . . , n of T5. By Theorem 2.1, the new tree, say G8, thus formed is graceful. LetA5

be the set of vertex labels of A4 which have come to the vertex k + 1 after the transfer T5.

13. Next consider the transfer T6 : k+1 → q−k−1 → k+2 → q−k−2 → k+3 → q−k−3 → . . . → p,

where p =

{
k + k1 + 1; if m is odd
q − k − k1, if m is even

, k1 = so + se

Observe that the vertices of transfer T6 and the elements of A5 satisfy the hypothesis of Theorem
2.1. Let so =

∑m
i=1[oi], se =

∑m
i=1[ei], and sp =

∑m
i=1[pi]. Observe that in the transfer T6,

the first so vertices are the centers of the odd branches incident on ais, the next se vertices are the
centers of the even branches incident on ais, and the remaining sp vertices are the pendant vertices
incident on ais. Finally, carry out the transfer T6 consisting of so (so − 1 if se = 0) transfers of
the first type, followed by se transfers of the second type and keep required number of vertices at
each vertex of T6 so that we get the tree D

(1)
6 . By virtue of Theorem 2.1, the tree D

(1)
6 thus formed

after the transfer T6 has a graceful labeling.

14. Finally attach r pendant vertices to a0 and assign them the labels q− r+1, q− r+2, . . ., q so
that we get the tree D6. The labeling given to D6 is obviously graceful.

Case - II: Let m + n be even. Then form a diameter six tree, say G6 by removing the vertices
c1, c2, . . ., cr, and bn from D6. Let |E(G6)| = q1. Give a graceful labeling to G6 by following

the steps 1 to 9 while giving a graceful labeling to D
(1)
6 by replacing q − r with q1 in the proof for

Case - I. Observe that in the graceful labeling of G6, the vertex a0 gets the label 0. Now attach
the vertices c1, c2, . . ., cr, and bn to a0 and assign them the labels q1 + 1, q1 + 2, . . ., q1 + r, and
q1 + r + 1, respectively.

Obviously, the tree G6 ∪ {c1, c2, . . . , cr, bn} with the labelings mentioned above is graceful with
a graceful labeling, say g. Then apply inverse transformation gq1+r+1 to the above labeling of
G6 ∪ {c1, c2, . . . , cr, bn}. Now the vertex bn gets the label 0. Let deg(bn) = p. Finally, attach
p− 1 pendant vertices to bn and assign them the labels q1 + r + 2, q1 + r + 3, . . ., q1 + r + p, so as
to get the tree D6 with a graceful labeling.
(b) Proof follows on setting r = 0 in the proof involving part (a).
(c) Proof follows on setting n = 0 in the proof involving part (a).
(d) Proof follows on setting n = 0 and r = 0 in the proof involving part (a). �

Example 3.1 The diameter six tree in Fig. 3 is a diameter six of the type (a) in Table 1 in Theorem

3.1(a). Here q = 114, m = 6, and n = 3, a1 is attached to (o, 0, 0), a2 is attached to (o, e, 0), a3 is

attached to (e, o, 0), a4 is attached to (e, o, e), a5 is attached to (0, o, e), and a6 is attached to (0, e, o).

7
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Fig. 3. A diameter six tree of the type (a) in Table 1 in Theorem 3.1 with a graceful
labeling

Theorem 3.2. If degrees of ai and bj are even, for i = 1, 2, 3, . . . ,m; j = 1, 2, 3, . . . , n, and the
centers ai, i = 1, 2, . . . , m, of diameter four trees are attached to combinations as shown in Table
2 then D6 given by the following are graceful.

(a): D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr}.
(b): D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn}.
(c): D6 = {a0; a1, a2, . . . , am; c1, c2, . . . , cr} with m odd.
(d): D6 = {a0; a1, a2, . . . , am} with m odd.

Proof (a): Case - I Let m + n be odd. Let |E(D6)| = q and deg(a0) = m + n = 2k + 1.
Proceed as per the following steps.
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Table 2. Diameter Six Trees of Theorem 3.2

Cases ↓ ai, 1 ≤ i ≤
m1

ai, m1+1 ≤
i ≤ m2

ai, m2+1 ≤
i ≤ m3

ai, m3+1 ≤
i ≤ m4

ai, m4+1 ≤
i ≤ m5 =
m

(a) (o, 0, 0) (o, e, 0) (o, e, e) (o, o, o) (e, 0, o)

(b) same as (a) (o, 0, e) same as (a) same as (a) same as (a)

(c) same as (a) same as (b) (o, o, o) (e, e, o) same as (a)

(d) same as (a) same as (b) same as (c) same as (c) (0, e, o)

1. Repeat Step 1 in the proof involving Case - I of Theorem 3.1.

2. Define integers α
(j)
i , for i = 1, 2, . . . ,m, j = 1, 2, 3, 4, 5 as per the following. For 1 ≤ i ≤ m1:

2α
(1)
i + 1 = oi = deg(ai)− 1.

For m1 +1 ≤ i ≤ m2: For the case (a): 2α
(1)
i +1 = oi, 2[α

(2)
i +α

(3)
i +1] = ei. For the cases (b),

(c), and (d): 2α
(1)
i + 1 = oi, 2[α

(4)
i + α

(5)
i + 1] = pi.

For m2 + 1 ≤ i ≤ m3: For the cases (a) and (b): 2α
(1)
i + 1 = oi, 2[α

(2)
i + α

(3)
i + 1] = ei, and

2[α
(4)
i +α

(5)
i +1] = pi. For the cases (c) and (d): 2α

(1)
i +1 = oi, 2α

(4)
i +1 = ei, 2α

(5)
i +1 = pi.

For m3 + 1 ≤ i ≤ m4: For the cases (a) and (b): 2α
(1)
i + 1 = oi, 2α

(2)
i + 1 = ei, 2α

(5)
i + 1 = pi.

For the cases (c) and (d): 2[α
(1)
i + α

(2)
i + 1] = oi, 2[α

(3)
i + α

(4)
i + 1] = ei, and 2α

(5)
i + 1 = pi.

For m4 + 1 ≤ i ≤ m5 = m: For the cases (a), (be), and (c): 2[α
(1)
i + α

(2)
i + 1] = oi and

2α
(5)
i + 1 = pi. For the case (d): 2[α

(3)
i + α

(4)
i + 1] = ei, and 2α

(5)
i + 1 = pi.

3. Repeat Step 3 in the proof involving Case - I of Theorem 3.1.

4. Define an integer t as t = b1 for the cases (a), (b), and (c) and t = am4+1 for the case (d).
Carry out the transfer T1 : a1 → a2 → a3 → a4 → a5 → a6 → . . . → t as in Step 3 of the proof
involving Theorem 3.1 and keep 2α

(1)
i + 1 vertices from A at each vertex ai of T1. Let A1 be the

set of vertices of A transferred to the vertex t in the transfer T1.

5. Define an integer t1 as t1 = am for the cases (a), (b), and (c) and t1 = am4 for the case
(d). Carry out the transfer t −→ t1 of the first type and bring back all the elements of A1 to t1.
Obviously, the new tree thus formed, say G2, is graceful.

6. Define the transfer T2 as follows. T2 : am → am−1 → . . . → am1+1 → am1 for the case (a);
T2 : am → am−1 → . . . → am2+1 → am2 for the case (b); T2 : am → am−1 → . . . → am3+1 → am3

for the case (c); T2 : am4 → am4−1 → . . . → am3+1 → am3 for the case (d). Carry out the transfer

T2 keeping 2α
(2)
i + 1 elements of A1 at the vertices ai of T2 as we have done in the proof involving

Theorem 3.1. Let A2 is the set of vertices of A1 that have come to the vertex am1 , am2 , or am3 as
the case may be.

7. Execute the transfer am1 → am1+1 (for the case (a)), am2 → am2+1 (for the case (b)), or
am3 → am3+1 (for the cases (c) and (d)) as the case may and bring back all elements of A2 to
am1+1, am2+1, or am3+1 as the case may be.

8. Define the transfer T3 as follows. T3 : am1+1 → am1+2 → . . . → am3 → am3+1 for the case (a);
T3 : am2+1 → am2+2 → am2+3 → . . . → am3 → am3+1 for the case (b); T3 : am3+1 → am3+2 →
am3+3 → . . . → am4 → am4+1 for the case (c); T3 : am3+1 → am3+2 → am3+3 → . . . → am → b1

9
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for the case (d). Execute the transfer T3 and keep 2α
(3)
i + 1 elements of A2 at the vertices ai of T3

as we have done in the proof involving Theorem 3.1. Let A3 is the set of vertices of A2 that have
come to the last vertex of T3.

9. Execute the transfer am3+1 → am3 (for the cases (a) and (b)) or am4+1 → am4) (for the case
(c)) or b1 −→ am (for the case (d)) of the first type and bring back all the elements of A3 to am3 ,
am4 , or am as the case may be. Obviously, the new tree thus formed, say G5, is graceful.

10. Define the transfer T4 as follows. T4 : am3 → am3−1 → . . . → am2+1 → am2 for the case (a);
T4 : am3 → am3−1 → . . . → am1+1 → am1 for the case (b); T4 : am4 → am4−1 → . . . → am1+1 →
am1 for the cases (c) and (d). Execute the transfer T4 consisting of m successive transfers of the

first type, keeping 2α
(4)
i + 1 elements of A3 at the vertices ai of T4 as we have done in the proof

involving Theorem 3.1. Let A4 be the set of vertices of A3 which have been transferred to 0.

11. Execute the transfer am1 −→ am1+1 (for the cases (b), (c), and (s)) or am2 −→ am2+1 (for the
case (a)) of the first type and bring back all the elements of A4 to am1+1 or am2+1 as the case may
be. Obviously, the new tree thus formed, say G7, is graceful.

12. Now consider the transfer T5 : ar+1 → al+2 → al+3 → . . . → am → b1 → b2 → . . . → bn →
k + 1, where l = m1 for the cases (b), (c), and (d) and l = m2 for the case (a). Carry out the

transfer T5 consisting of successive transfers of the first type keeping 2α
(5)
i + 1 elements of A4 at

the vertices ai and the desired odd number of vertices at bj , j = 1, 2, . . . , n of T5. By Theorem
2.1(a), the new tree, say G8, thus formed is graceful. Let A5 be the set of vertex labels of A4 which
have come to the vertex k + 1 after the transfer T5.

13, 14. Repeat Steps 13 and 14 in the proof involving Theorem 3.1 so that one gets back the tree
D6 with a graceful labeling.

Case - II: If m+n is even then the proof follows from that of Case - I by repeating the procedure
involving the proof of Theorem 3.1(a) for Case -II. Proofs for the parts (b), (c), and (d) follow from
the proof involving the part (a) by setting r = 0; n = 0; and t n = 0 and r = 0. �

Example 3.2 The diameter six tree in Fig. 4 is a diameter six of the type (d) in Table 2 in Theorem

3.2(a). Here q = 109, m = 5, and n = 4, a1 is attached to (o, 0, 0), a2 is attached to (o, 0, e), a3 is

attached to (o, o, o), a4 is attached to (e, e, o), and a5 is attached to (0, e, o).

Notation 3.1 Let D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr} be diameter six tree. We
may have one of or both n = 0 and r = 0. For next couple of results we will consistent use the
following notations.

ne = Number of stars adjacent to a0 with center having odd degree.
no = Number of stars adjacent to a0 with center having even degree, i.e. n = ne + no.

Theorem 3.3. Let m+ n be odd, ne
∼= 0 mod 4, degrees of ai are even, for i = 1, 2, 3, . . . , m.

If the centers ai, i = 1, 2, . . . , m, of diameter four trees are attached to combinations as shown
in Tables 1 and 2 then

(a) D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr} is graceful.
(b) D6 = {a0; a1, . . . , am; b1, b2, . . . , bn} is graceful.

Proof: (a) Consider the part (a) first. Let |E(D6)| = q and deg(a0) = m + n = 2k + 1.
Proceed as per the following steps.
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Fig. 4. A diameter six tree of the type (d) in Table 2 in Theorem 3.2 with a graceful
labeling.

Repeat Steps 1 to 11 in the proof of Theorem 3.1(a)(or 3.2(a)) for Case -I.

12. Now consider the transfer T5 : ar+1 → ar+2 → ar+3 → . . . → am → b1 → b2 → . . . → bn →
k + 1, consisting of m+ no successive transfers of the first type, followed by ne

4
successive BD8TF

from vertex levels in the set A4. Observe that the transfer T5 and the set A4 satisfy the hypothesis
of Theorem 2.1.

Carry out the transfer T5 keeping 2α
(5)
i + 1 elements of A4 at the vertices ai, the desired odd

number of vertices at bj , j = 1, 2, . . . , no, and the desired even number of vertices at bj , j =
no + 1, no + 2, . . . , n of T5. By Theorem 2.1, the new tree, say G8, thus formed is graceful. Let A5

be the set of vertex labels of A4 which have come to the vertex k + 1 after the transfer T5.

Finally, repeat Steps 13 and 14 in the proof involving Theorem 3.1(a) (or 3.2(a)) for Case -I to get
the tree D6 with a graceful labeling. The proof of part (b) follows on setting r = 0 in the proof
involving part (a). �

Theorem 3.4. Let m + n be even, either ne
∼= 1 mod 4 or ne

∼= 0 mod 4 and no ≥ 1, degrees
of ai are even, for i = 1, 2, 3, . . . , m. If the centers ai, i = 1, 2, . . . , m, of diameter four trees
are attached to combinations as shown in Tables 1 and 2 then
(a) D6 = {a0; a1, a2, . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr} is graceful.
(b) D6 = {a0; a1, . . . , am; b1, b2, . . . , bn} is graceful.

Proof : Consider the part (a) first. Designate the vertex bn as the center of a star adjacent to a0

with odd (respectively, even) degree if ne
∼= 1 mod 4 (respectively, ne

∼= 0 mod 4, no ≥ 1).
Define two integers k1 and k2 as

k1 =

{
ne − 1 if ne

∼= 1 mod 4
ne if ne

∼= 0 mod 4 and no ≥ 1
; k2 =

{
no if ne

∼= 1 mod 4
no − 1 if ne

∼= 0 mod 4 and no ≥ 1

So we have n = no +ne = k1 +k2 +1. Form a diameter six tree, say G6 by removing the vertices
c1, c2, . . ., cr, and bn from D6. Let |E(G6)| = q1. Give a graceful labeling to G6 by following the
steps 1 to 12 in the proof of Theorem 3.1(a) (or 3.2(a)) by setting q − r = q1 and replacing ne

11
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with k1 and no by k2. Observe that in the graceful labeling of G6, the vertex a0 gets the label 0.
Now attach the vertices c1, c2, . . ., cr, and bn to a0 and assign them the labels q1 + 1, q1 + 2, . . .,
q1 + r, and q1 + r+1, respectively. Obviously, the tree G6 ∪{c1, c2, . . . , cr, bn} with the labelings
mentioned above is graceful with a graceful labeling, say g. Then apply inverse transformation
gq1+r+1 to the above labeling of G6 ∪ {c1, c2, . . . , cr, bn}. Now the vertex bn gets the label 0.
Let deg(bn) = p. Finally, attach p pendant vertices to bn and assign them the labels q1 + r + 2,
q1 + r + 3, . . ., q1 + r + p+ 1, so as to get the tree D6 with a graceful labeling. The proof of part
(b) follows if we set r = 0. �

Theorem 3.5. If is m even, degree of ai are even, for i = 1, 2, 3, . . . ,m, the centers ai, i =
1, 2, . . . , m, of diameter four trees are attached to combinations as shown in Tables 1 and 2 with
m1 ≥ 3 and degree of at least one ai, 1 ≤ i ≤ m1 is ≥ 4, then D6 = {a0; a1, . . . , am} has a graceful
labeling.

Proof : Let us designate the vertex a2 as the center of diameter four tree whose degree upon which
at lest 3 odd branches are incident. Let us remove one diameter four tree with center having even
degree from D6. Let us designate this vertex as am. Excluding a0 there are om neighbours of am.
We attach om − 1 neighbours of am to the vertex a2. Let the resultant tree thus formed be G6.
Obviously it is a diameter six tree of the type D

(1)
6 in the proof involving Theorem 3.1(a) (or 3.2(a))

for Case - I. Let |E(G6)| = q1. Repeat the procedure in the proof of Theorem 3.1(a) (or 3.2(a)) for
Case - I by replacing m1 with m1 − 1, m with m− 1 and q − r with q1 and give a graceful labeling
to G6.

Observe that the vertex a2 gets label 1, and the 2α
(1)
2 + om neighbours of a2 get the labels q1 − x,

x+ 1 + i, q1 − x− i, x = k + α
(1)
1 + 1, i = 1, 2, . . . , α

(1)
2 + [ om−1

2
]. While labeling G6 allot labels

x+ i+2, q1 − x− i, i = 1, 2, . . . , [ om−1
2

] to om − 1 neighbours of am that were shifted to a2 while
constructing G6. Next attach the vertex am to a0 and assign label q1 + 1. Now move the vertices
x+i+2, q1−x−i, i = 1, 2, . . . , [ om−1

2
], to am. Since (x+i+2)+(q1−x−i) = q1+2 = 1+(q1+1),

for i = 1, 2, . . . , [ om−1
2

], by Theorem 2.1 the resultant tree, say G1 thus formed is graceful with a
graceful labeling, say g. Apply inverse transformation gq1+1 to G1 so that the label of the vertex am

becomes 0. By Lemma 2.2, gq1+1 is a graceful labeling of G1. The labelling gq1+1 assigns the label
0 to the vertex am. Now attach a new vertex to am and assign it the label q1 + 2. The resultant
tree thus obtained, say G2 is graceful and the the resultant graceful labeling be g1. Apply inverse
transformation g1q1+2 to G2 so that the label of the vertex q1 +2 of G2 becomes 0. By Lemma 2.2,
g1q1+2 is a graceful labeling of G2. Let excluding am the number of neighbours of the remaining
odd branch be p. Now attach the p pendant vertices adjacent to the vertex labelled 0 and assign
them the labels q1 + 3, q1 + 4, . . . , q1 + p + 2. So we get the tree D6 as desired and the labeling
obtained above is a graceful labeling of D6. �

Example 3.3 The diameter six tree in Fig. 5 [a] is a diameter six of the type in Theorem 3.5. Here

q = 126, m = 8, each ai, i = 1, 2, 3, is attached to (o, 0, 0), a4 is attached to (o, 0, e), each ai, i = 5, 6, 7,

is attached to (o, e, e), a8 is attached to (e, 0, o). We first form the graceful diameter six tree G6 as in

Figure [b] by removing the branch incident on a8 and three branches incident on it and making two of these

branches adjacent to the vertex a2. Figure [c] represents the tree obtained from the graceful tree in [b] by

attaching a vertex to a0 (with label 0) and assigning the label 122 to it and shifting the branches with labels

7 and 116 from the vertex label 1 to the new vertex (labeled 122). The graceful tree in Figure [d] is obtained

by applying inverse transformation to the graceful tree in Figure [c] and attaching a new vertex to the vertex

labeled 0 and assigning it the label 123. Finally, the graceful tree D6 in Figure [e] is obtained by applying

inverse transformation to the graceful tree in Figure [d] and attaching three vertices to the vertex labeled 0

and assigning them the labels 124, 125, and 126.

12
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Fig. 5. A diameter six tree of the type in Theorem 3.5 with a graceful labeling.
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4 Conclusion

a In this article we have given graceful labelings to some new classes of diameter six trees in which
the diameter four trees adjacent to the centers contain six different combinations of odd even
and pendant branches. We feel our effort will inspire the researchers of this area to make
inroads in the direction of resolving the conjecture of Ringel and Kotzig (1964) which states
that all trees are graceful.

b As a sub case of ”the graceful tree conjecture” we state the following conjecture.

Conjecture: All trees of diameter six are graceful.

c As a future work from the concepts discussed in this article, one can try out the followings.

i) Giving graceful labelings to some more generalized classes of diameter six trees in which
the diameter four trees adjacent to the center may have any combinations of odd, even, and
pendant branches.

ii) Giving graceful labelings to some classes of trees with any even diameter.

iii) Giving graceful labelings to all lobsters with diameter six.
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