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ABSTRACT 
 

It is the vibration of an unknown force that causes life and existence. Therefore, for anything to 
exist it must possess vibration. Vibration produces wave. It is the vibration of the HIV parasite 
(parasitic wave) that is being superposed on the Human Vibration (host wave) and since the waves 
are incoherent and out of phase the resultant superposition is destructive. Destructive interference 
causes a gradual attenuation in the general mechanism of the body system which eventually leads 
to a general loss of signal if uncontrolled. If the vibration of anything is known, then its 
characteristics can be predicted and be destroyed by an anti-vibrating component. In this work, we 
numerically calculated the wave characteristics of the Human vibration and that of the HIV 
vibration. In this paper, we show quantitatively how regulated dose of electromagnetic (EM) wave, 
can be used to eradicate HIV/AIDS condition from the Human system the resident host. The 
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spectrum of the interception of the applied oscillating EM wave with the HIV vibration in the Human 
system shows a constriction in the interval when the raising multiplier [8000, 9000] with a 
corresponding time interval [1499.8125, 1499.8333] seconds. Therefore, the actual time of 
exposure of the HIV/AIDS patient who is undergoing the radiation therapy is about 0.0208 seconds. 
The displacement of the applied oscillating EM wave tends to zero within this interval. This study 
also shows that the time it would take the applied EM wave to destroy the HIV vibration completely 
from the human system is also determined by the phase angle between the applied oscillating EM 
wave and the HIV parasitic wave. 
 

 
Keywords: EM wave; human vibration; HIV vibration; ‘host wave’; ‘parasitic wave’; carrier wave and 

the raising multiplier. 
 
1. INTRODUCTION  
 
After several years of intense experimental and 
theoretical studies of HIV/AIDS, there is still no 
adequate understanding of the formation of 
HIV/AIDS and possible cure to the virulent 
disease. The human immunodeficiency virus 
(HIV) is still among the most pressing health 
problems in the world today.  
 
It is therefore sufficient to say that the concepts 
advanced so far by scientists about HIV/AIDS 
are inadequate and they lack proper 
understanding of the HIV/AIDS formation. 
Advances made so far in medical procedures 
and devices require a better understanding of the 
dynamical characteristics of HIV/AIDS and its 
formation in the human system.  
 
According to the literature of clinical diseases, 
the HIV feeds on and in the process kills the 
active cells that make up the immune system [1]. 
This is a very correct statement but not a unique 
understanding. There is also a cause (vibration) 
that gives the HIV its own intrinsic 
characteristics, activity, formation and existence.  
 
The human immunodeficiency virus (HIV) and 
acquired immunodeficiency syndrome (AIDS) is 
a condition of the human immune system caused 
by HIV. The role of Human-Immunodeficiency 
Virus (HIV) in the blood circulating system of 
Man (host) has in general been poorly 
understood. However, its role in clinical disease 
has attracted increasing interest [2,3].  
 
The HIV fatal effect stems from the attack on a 
person’s CD4 cell counts. This result to the 
progressive depletion of the CD4 cell counts 
which play a pivotal regulatory role in the 
immune response to infections and tumours. 
During the initial infection a person may 
experience a brief period of influenza-like illness. 
This is typically followed by a prolonged period 
without symptoms [4,5].  

Infection by the human immunodeficiency virus 
(HIV) gradually evolves to acquire 
immunodeficiency syndrome (AIDS) and which 
finally leads to death. In the absence of specific 
treatment, around half of the people infected with 
HIV develop AIDS within 10 years and the 
average survival time after infection with HIV is 
estimated to be 9 to 11 years depending on the 
subtype. After the diagnosis of AIDS, if treatment 
is not available, survival ranges between 6 and 
19 months [6,7].  
 
In addition to the knowledge of the medical 
experts about HIV/AIDS condition, is the 
understanding that Man and the HIV are both 
active matter, as a result, they must have 
independent peculiar vibrations in order to exist. 
It is the vibration of the HIV that interferes with 
the vibration of Man (host) in the human system 
after infection [8].  
 
Some waves in nature behave parasitically when 
they interfere with another one. Such waves as 
the name implies have the ability of transforming 
the initial characteristics and behaviour of the 
‘host wave’ to its own form and quality after a 
period of time. Under this circumstance, all the 
active constituents of the ‘host wave’ would have 
been completely eroded and the resulting wave 
which is now parasitically monochromatic, will 
eventually attenuate to zero, since the ‘parasitic 
wave’ does not have its own physical parameters 
for sustaining a continuous independent 
existence [9]. 
 
The human heart stands as a transducer of this 
vibration. Fortunately the blood stands as a 
means of conveying this vibration to all units of 
the human system. As we all know, the human 
blood transports oxygen and food nutrients to all 
parts of the human system. It is the          
transport property of the blood that provides 
energy and sustenance of life to the human 
system [10]. 
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The human cyclic heart contraction (disturbance) 
generates pulsatile blood flow and latent 
vibration. The latent vibration is sinusoidal and 
central in character, that is, it flows along the 
middle of the vascular blood vessels and in the 
process it orients the active particles of the blood 
and sets them into oscillating motion with a 
unified frequency. Generally, it is the human 
blood that responds to the latent vibration from 
the heart with a specified wave form. A 
sinusoidal time varying flow is used to simulate 
the pulsation of a heart [11,12]. 
 
The propagation of blood away from the region of 
the disturbance has certain velocity and in the 
process circulates oxygen and food nutrients to 
nourish the biological cells of the human system. 
Any alteration to this process, results into 
starvation, gradual weakening of the fundamental 
cells, and subsequent breakdown of the entire 
human biological system if uncontrolled. 

 
Electromagnetic (EM) wave is a transverse wave 
and which as the name suggests is made up of 

the electric field ( E
r

), which is radial and 
perpendicular to the direction of propagation and 

the magnetic field ( B
r

), which is circumferential 
to the direction of propagation. For simplicity, we 
shall assumed that the electric field and the 
magnetic field always lie in the same plane, that 

is, it is linearly polarized. Both E
r

and B
r

 lie in the 
same plane perpendicular to the direction of 
propagation. The character of the EM wave 
depends on the nature of the amplitudes in this 
plane; we can concentrate on the electric field 
since the magnetic field

 
can always be found 

from the electric field [13,14]. 
 
In physics, a wave is disturbance or oscillation 
that travels through matter and space, 
accompanied by a transfer of energy. Wave 
motion transfers energy from one point to 
another, often with no permanent displacement 
of the particles of the medium, that is, with little 
or no associated mass transfer. Instead, they 
consist, of oscillations or vibrations around 
almost fixed locations [15].  
 
If a wave is to travel through a medium such as 
water, air, steel, or a stretched string, it must 
cause the particles of that medium to oscillate as 
it passes. For that to happen, the medium must 
possess both mass (so that there can be kinetic 
energy) and elasticity (so that there can be 
potential energy). Thus, the medium’s mass and 

elasticity property determines how fast the wave 
can travel in the medium [16].    
 
The beating of the human heart is associated 
with a latent vibration. The latent wave generated 
tends to culture and align the blood particles to 
assume a specified waveform. Hence the 
induced latent wave travelling through the blood 
medium causes the particles of the blood 
medium to oscillate with the same frequency as it 
passes.   
 
Thus when an individual contacts HIV, the 
vibration of the HIV interferes with the latent 
vibration of the human system. If the interference 
is out of phase (destructive interference), then, 
the two waves do not reconstruct. This results to 
a gradual or rapid damping of the resultant 
amplitude of the two waves to zero displacement.  

  
Every material contains particles. When a wave 
travels through a material, the oscillating field in 
the wave will set some of these particles into 
forced vibration, and the vibrating particles will 
generate new waves of their own. The initial 
energy of the propagating wave is attenuated 
due to absorption and scattering by the medium 
as it passes [17]. 
 
This paper is outlined as follows. Section 1, 
illustrates the basic concept of the work under 
study. The mathematical theory is presented in 
section 2. The results obtained and the analytical 
discussion of the results are shown in section 3. 
The conclusion of this work is shown in section 4. 
This is immediately followed by a list of 
references.  
 
1.1 Research Methodology 
 
In this current study, we first superposed a 
‘parasitic wave’ on a ‘host wave’ and we used 
simple differentiation technique to derive the 
vibrating characteristics of Man (host wave) and 
the HIV (parasitic wave). Finally, we applied the 
Fourier series expansion technique to study the 
behaviour of the applied electromagnetic EM 
wave as it interacts with the HIV vibration in the 
Human system. 
 
2. MATHEMATICAL THEORY AND 

SCIENTIFIC RESEARCH PROCEDURE 
 

• That the HIV kills slowly with time shows 
that the wave-functions of the HIV and that 
of the host were initially incoherent. As a 
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result, the basic features of the Human 
vibration were initially greater than those of 
the HIV.  

• The wave properties of HIV are 
independent of intrinsic variables such as 
the number, size, mass and of course 
mutation.  

• Since the immune system of AIDS patient 
is almost zero, the measured wave 
function shall depend entirely on the 
vibrating property of the HIV since every 
other active wave characteristics of the 
Human blood system would have been 
completely eroded.  

• The wave characteristic of HIV infected 
candidate is the same everywhere within 
the host (Man). That is, irrespective of the 
occupation of the HIV in the host system, 
the activity is the same. 

• The wave properties of HIV cannot be 
directly measured since it does not have its 
own independent existence outside the 
host system. As a result, the wave function 
of HIV can only be deductively measured.  

• If HIV exists it must have its own peculiar 
vibration which must be independent of the 
vibration of the Human (host) system.  

• The wave and vibrating characteristics of 
blood in the circulating system of a normal 
individual free from HIV/AIDS infection 
shall assumed to be measured and the 
four independent variables following the 
observations about the wave recorded 
function are: (i) the amplitude, a  (ii) the 
phase angle, ε  (iii) the angular frequency, 
n and (iv) the wave number, k . Note that 

na ,, ε  and k   are assumed to be   

constant with time in a normal human 
system except for some fluctuating factors, 
e.g. illness, which of course can only alter 
them slightly and temporarily.  

• The wave and vibrating characteristics of 
blood in the circulating system of HIV/AIDS 
infected candidate, whose immune count 
rate is very low or almost zero is also 
assumed to be measured and the four 
independent variables following the 
observations of the recorded wave 
functions are: (i) the amplitude, b  (ii) the 
phase angle, 'ε  (iii) the angular frequency, 

'n  and (iv) the wave number, k′ .  
• Now, suppose we consider the wave 

function of the Vibration Man as the ‘host 
wave’ which can be described by the 
cosine sinusoidal function 

( )ζεζζξ −−= tnrkatry
rrr

.cos),(1          (2.1) 
 

Where kjkik +=
r

 and the position vector 
yjxir +=r

 are two dimensional (2D) vectors in 
Cartesian coordinate system and t is the time. 
Although, in polar coordinate system θcosrx =  
and θsinry = . But if na ,, ε  and k   are 

assumed to be constant with time then 1=ξ , as 

a result we get 
 

( )ε−−= tnrkatry
rrr

.cos),(1                    (2.2) 
 

• Also, suppose we consider the wave 
function of HIV as the ‘parasitic wave’ 
which we can also described by the cosine 
sinusoidal function 
 

( )λελλλ ′−′−′= tnrkbtry
rrr

.cos),(2           (2.3) 
 
As it is from the equation, the ‘parasitic wave’ 
has an inbuilt raising multiplier λ  ( λ  = 0, 1, 2, . . 

., maxλ ). The inbuilt multiplier is dimensionless 

and as the name implies, it has the ability of 
gradually raising the basic intrinsic parameters of 
the HIV ‘parasitic wave’ with time.  
 

• The equation (2.3) contains an inbuilt 
multiplier λ  which is capable of raising the 
intrinsic parameters of the ‘parasitic wave’ 
to become equal to those of the ‘host 
wave’. Consequently, once this equality is 
achieved, then all the active components 
of the host wave would have been 
completely eroded and it ceases to exist. A 
‘parasitic wave’ as the name implies, has 
the ability of destroying or transforming the 
intrinsic constituents of the ‘host wave’ to 
its own form after a sufficiently long time.  

 

• When equation (2.3) is superposed on 
equation (2.1) after some lengthy algebra 
we get a resultant wave equation given by, 

 

( )ε−−=+= tnrkatrytrytry
rrrrr

.cos),(),(),( 21

+ ( )λελλλ ′−′−′ tnrkb
rr

.cos                        (2.4) 
 

( ) ( ){ }2
1

2222 ()(cos2)(),( λεελλλ ′−−′−−−−= tnnbabatry
r

( ))()(.cos tEtnnrkc −′−− λ)r

                     (2.5) 
 

( )
( )






′−−′+

′−−′+
= −

tnnba

tnnba
tE

)(coscos

)(sinsin
tan)(

1

λλελε

λλελε

  
(2.6) 
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Equation (2.5) satisfies the required boundary 
conditions and it is regarded as the carrier wave 
(CW). Thus (2.5) is the wave equation that 
governs the coexistence of the vibrations of the 
HIV ‘parasitic wave’ and that of Man the ‘host 
wave’ within the human system. 
 

• The wave mechanics of HIV in the Human 
Blood circulating system is two 
dimensional 2D in character since it is a 
transverse wave, the position vector of the 
whole blood (particles and fluid) in motion 
can be represented as 

)sincos( jirr θθ +=r

 and hence the motion 

is constant with respect to the z - axis. 

jkkikkkc )()( λλ ′−+′−=
r

. 

• While on interpretation 

( )θθλ sincos)(. +′−= kkrkc
)r

 is the 

coordinate of two dimensional (2D) 
position vector and rrr /

r) = ji θθ sincos +=  

is a unit vector, )( λεεπθ ′−−= , the total 
phase angle of the CW is represented by 

)(tE . By definition: )( λnn ′−  is the 
modulation angular frequency, the 
modulation propagation constant is 

)( λkk ′− , the phase difference δ  between 
the two interfering waves is )( λεε ′− , and 
of course we have that the interference 

term is ( ) ( )λεελλ ′−−′−− ()(cos2
2

tnnba , 

while waves out of phase interfere 

destructively according to ( )2λba −  , 
however, waves in-phase interfere 

constructively according to ( )2λba + .  

• Driving forces in anti-phase )( πεε ±=′−  
provide full destructive superposition and 
the minimum possible amplitude; driving 
forces in phase )( εε ′=  provides full 
constructive superposition and maximum 
possible amplitude.   

 
2.1 Calculation of the Phase Angle ( ε ), 

Angular Frequency ( n ), Wavenumber 
( k ) and the Amplitude ( a ) of the 
Human Vibration (Resident Host):  

 
The carrier wave CW given by (2.5) can only 
have a maximum value if the spatial oscillating 
phase is equal to 1. Hence 

 

  
( ) ( ) ( ))()(cos2

2222 λεελλλ ′−−′−−−−= tnnbabaym                                                               (2.7) 

 

( ) ( )( ) 2

1

22222 )()(cos)(2)()()(sin))((
−

′−−′−−−−×′−−′−−′−= λεελλλλεελλλ tnnbabatnnbann
dt

yd m      (2.8) 

                                                                                                                                                                                           

( ) ( ) ( ) 2

1

2
22222

2

2

)()(cos2)()()(cos)()(

−









′−−′−−−−×′−−′−−′−= λεελλλλεελλλ tnnbabatnnbann

dt

yd m

 

( ) ( )( ) 2

3

2222242 )()(cos)(2)()()(sin)()(
−

′−−′−−−−×′−−′−−′−− λεελλλλεελλλ tnnbabatnnbann      (2.9) 
                                                                                                

The equation of motion obeyed by the carrier wave CW as it propagates along the human blood 
vessels experiences two resistive factors. Firstly, the resistance pose by the elasticity of the blood 
vessels and secondly, the resistance of the elasticity of the blood medium. The medium’s mass and 
elasticity property determines how fast the wave can travel in the medium.   
 
Consequently, the equation of motion of the carrier wave in the blood vessels

 
of the human system 

(host);  would be partly Newtonian due to the fluidize nature of the blood medium and non-Newtonian 
due to the particle constituent of the blood which makes it a non-ideal fluid. We can therefore write the 
equation of motion as 
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2
2

y
t

y
F σµ −

∂
∂

−=













                           (2.10) 

                                       

02 2

2

2

=+
∂
∂

+
∂

∂








y

t

y
y

t

y
V σµρ            (2.11) 

 

Where ρ is the density of the human blood (kgm-

3), V is the volume of the blood vessel which is 
considered to be cylindrical vascular geometry (

lr 2π ) and the unit is (m3), µ  is the dynamic 

viscosity of blood (kgm-1s-1), σ is the elasticity of 
the blood medium. The influence of gravity on 
the flow of blood is assumed to be negligible. 
Hence for maximum value of the carrier wave we 
then rewrite (2.11) as 
 

02 2

2

2

=+
∂

∂
+

∂

∂








my

t
my

my
t

my
V σµρ

 

(2.12) 

 
Now with the following boundary conditions that 
at time 0=t , 0=λ in (2.7), (2.8) and (2.9)  we 
obtain 

                                       

( ) 2
1

22 )(cos2 ε−−= aaym                      (2.13) 

 

( ))(cos2 222 ε−−= aaym                         (2.14) 

 

( ) 2
1

)(cos2)(sin 222
−

−−−=
∂

∂
εε aaan

t

ym

  
(2.15)     

( ) ( ) 2
3

)(cos2)(sin2
1

)cos(2)(cos 222422222

2

2 −
−−−−

−
−−−=

∂

∂
εεεε aaanaaan

t

ym

          

 (2.16) 

 
When we substitute (2.13) −   (2.16) into (2.12) we get after simplification that 
 

+
−−

−
−

−−

−














2/322

242

2/122

22

))cos(2(

)(sin

))cos(2(

)cos(

ε

ε

ε

ε
ρ

aa

an

aa

an
V

 
 















−−

−
×−−

2/122

2
2/122

))cos(2(

)sin(
))cos(2(2

ε

ε
εµ

aa

na
aa + ( ) 0)cos(2 22 =−− εσ aa                 (2.17) 

 

  ( ) ( ) 0))cos(21(2)sin(2
))cos(21(

)(sin

))cos(21(

)cos( 2

2/3

22

2/1

2

=−−+−+
−−

−
−

−−

−













εσεµ

ε

ε

ε

ε
ρ ana

anan
V

  

      

  

  (2.18) 

To linearize (2.18) we multiply through it by ( ) 2
3

)(cos21 ε−− in such a way that 

 

( ) ( )2/32222 ))(cos21()(sin2)(sin))(cos21()(cos εεµεεερ −−−+−−−−− anananV   +  

                                                                     ( ) 0))cos(21( 2/52 =−− εσ a                                          (2.19) 

 
Note that εε cos)cos( =− (even and symmetric function) and εε sin)(sin −=−  (odd and screw 
symmetric function), as a result (2.19) yields the following result.  
 

( ) ( ) ( ) 0)cos21()cos21(sin2sin)cos21(cos 2/522/32222 =−+−−+−− εσεεµεεερ aanananV    (2.20)     

 
Later we are going to utilize two types of approximation to reduce (2.20). 
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2.1.1 Calculation of the elasticity of the blood 
medium ( σ ) 

 

The elasticity of the blood medium ( σ ) as it 
leaves the heart region which we are calculating 
here is different from the elasticity of the red 
blood cell. Now we know that the elasticity of the 
human aorta is about 

2525 /101/1010 mNcmdyne ×=×=µ or more 

explicitly written as µ = 5
101× 21 −− skgm since we 

know that (1 N = 105 dyne, 104 cm2 = 1 m2). The 
dynamic viscosity of the human blood is about

004.0=η kg/m s and also the approximate 
angular frequency of the human heart is

12.1 −= sf . With the provision of these 

parameters we can estimate the mass impulse 
elasticity of the blood medium σ as it leaves the 
heart from the equation given, 

                    

2110

21

2121122

10304.2
5101

)2.1()004.0( −−−

−−

−−−

×=
×

×
== smkg

smkg

ssmkgf

µ
η

σ                     

(2.21) 

2.2 Calculation of the Phase Angle ( ε ), 
Angular Frequency ( n ) and the 
Amplitude ( a ) of the ‘Host Wave’ 

 
We have indicated before now that two types of 
approximation shall be utilized in order to 
linearize (2.20). These are the ‘third world 
approximation’ and the ‘fourth world 
approximation’. These approximations are the 
differential minimization of the resulting binomial 
expansion of a given variable function.  
 
The new approximations which we introduced in 
this study have the advantage of converging 
results easily and also producing expected 
minimum value of results. Although, there are 
several approximation techniques whose 
application depends on the physical interest 
under investigation. The two new approximation 
techniques were actually developed for the 
purpose of this present research.  
 
Now the ‘third world approximation’ states 
explicitly that  

 
 

( ) ( ) ( ) ( ))(32 )(
!3

)2)(1(
)(

!2

)1(
)(1)(1 φξ

φ
φξφξφξ

φ
φξ f

d

d
nf

nnn
f

nn
fn

d

dnf −+
−−

+
−

++=±+ 







K    (2.22)                                                                               

                                                                                                                                                                                             
While the ‘fourth world approximation’ states explicitly that 

       

( ) ( ) ( ) 







+

−−
+

−
++=±+ K

32 )(
!3

)2)(1(
)(

!2

)1(
)(1)(1 φξφξφξ

φ
φξ f

nnn
f

nn
fn

d

dnf

 
( ))(φξ

φ
f

d

d
n−

 

                                          ( ) L−− − 2)(
!2

)1( φξ
φ

f
d

dnn
                                      (2.23) 

 
Here φ  is any variable function and ξ  is a scalar number. The ‘fourth world approximation’ enhances 
minimum functional value since the amplitude of the carrier wave would have to go through the 
smallest blood vessel – the capillaries. Hence using the ‘third world approximation’ in (2.20) we get 
 

  ( ) ( ) ( ) εεεεεεεε sincos3sin3sincos3sin30)cos2(1cos21 2/32/3 −=−+−+=−+=− K           (2.24)      

                                                                       

( ) ( ) ( ) εεεεεεεε sincos15sin5sincos15sin50)cos2(1cos21 2/52/5 −=−+−+=−+=− K          (2.25) 
 
Also with a similar implementation of the ‘fourth world approximation’, in equation (2.20) we get  
 

( ) ( ) εεεε sincos
2

3
)cos2(1cos21 22/32/3 −=−+=−

                             
 
                                       

 (2.26)                                                         

( ) ( ) εεεε sincos
2

15
)cos2(1cos21 22/52/5 =−+=−                                                                     (2.27) 
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When we substitute (2.24) and (2.25) into (2.20) we realize after some simplification and 
rearrangement that  
 

( ) ( ) 0sincos15sincos6sincos2cos 22222 =−+−− εεσεεµεεερ naanV                                   (2.28)   
 
We can now equate the coefficient of the terms in the parentheses to zero so that we get two 
separate equations as shown in (2.29) and (2.30). 
 

( ) 0sincos2cos 22 =−− εεε                                                                                                           (2.29) 
 

εµ
σ

εεµ

εεσ
sin6

15

sincos6

sincos15

2
==n

                                                               

                                         (2.30) 

 
Also by a similar substitution of (2.26) and (2.27) into (2.20) we get after some simplification that  
 

( ) ( ) 0sincos15sincos6sincos2cos2 2222222 =++−− εεσεεµεεερ naanV                            (2.31)  

                                                                                          

 
( )

εεσεεµ

ρεεε

sincos15cossin6

2sincos2cos

222

222

+

−−−
=

n

nV
a

                                             

 

 

                                         (2.32) 

 
Let us now solve for the critical value of the phase angle of the ‘host wave’ vibration by using the 

relation
2

1cos
2ε

ε −=  and εε =sin  in (2.29), so that 

 

0224 =+− εε                                                                                                                    (2.33) 
 
Upon solving for ε  in (2.33) we get four roots as possible solutions to it; they are 
 

i6761.09783.01 +−=ε ; i6761.09783.02 −−=ε ; i6761.09783.03 +=ε ; i6761.09783.04 −=ε         (2.34)     
 

Thus a more realistic complex value of the phase angle ε  is i6761.09783.03 +=ε  and by converting 

the result from the complex value to a more realistic value in degree or radian we get 
 

)35(.6109.0)6911.0(tan6911.0
9783.0

6761.0
tan 01 rad==⇒== −εε                                                  (2.35) 

 

srad
skgm

skgm
n /.1051.2

)6109.0(sin004.06

10304.215 7

11

2110
−

−−

−−−
×=

××

××
=                                                               (2.36) 

 

( )
)6109.0(sin)6109.0(cos10304.2(15)6109.0(sin)6109.0(cos)004.0)(1051.2(6

2)6109.0(sin)6109.0(cos2)6109.0cos(

2
)

10227

222

−− ×+×

−−−
=

nV
a

ρ

    

  (2.37)    

 

( ) 221 21.320238983 nVsmkga ρ−=                                                                                                    (2.38) 

 
Now for the human ascending aorta whose radius mr 015.0=  and length ml 07.0= , then the volume  

V  is 
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  3522 1094865.407.0)015.0(142.3 mlrV −×=××== π                                                                  (2.39)  
     

( ) msradmkgmsmkga 621735321 101.2).1051.2(1094865.4105021.320238983 −−−−−− ×××××××= =     (2.40)     
        

It should be made very clear that the amplitude 
a  decreases in size as it leaves the source 
which is the heart and so it can assume the 
radius size of the capillary. 
 
2.2.1 Calculation of the spatial frequency ( k ) 

of the ‘host wave’  
 
We have made the assumption that for the 
carrier wave CW to have a maximum value then 
the spatial oscillating phase must be equal to 1, 
as a result 

                                           

( ) 1)(.)(cos =−′−−′− Etnnrkk λλ rrr

             (2.41) 
 

( ) 0)(.)( =−′−−′− Etnnrkk λλ rrr

                 (2.42) 

     
                         

kkkjkkikkkk zyx )()()()( λλλλ ′−+′−+′−=′−
rr

   

                                            (2.43) 
 

zkyjxir ++=r

                                         (2.44) 
 
If we assume that the motion is constant in the z-
direction and the wave vector mode is also the 
same for both x and y plane in the cylindrical 
system then 

                                            

jkkikkkk yx )()()( λλλ ′−+′−=′−
rr

            
 (2.45) 

                                                  
jrirr θθ sincos +=r

                              (2.46) 
 
where )( λεεπθ ′−−= is the variable angle 

between 1y and 2y , please see Fig. 1 for details 

of the geometry. 
 

=′− rkk
rvr

.)( λ  )sin(cos)( θθλ +′− rkk           (2.47) 
 

( ) 0)()sincos()( =−′−−+′− Etnnrkk λθθλ   
 (2.48) 

 
We can now impose the same boundary 
conditions on (2.48). That is, from equation (2.6) 
at time 0=t , 0=λ ,   
 
 

== − )tan(tan 1 εE =ε .6109.0 rad ;  
.5311.26109.0142.3)( rad=−=−=′−−= επλεεπθ

       (2.49)        
 

( ) 0.6109.0)5311.2(sin)5311.2(cos =−+ radrk     
                                                (2.50) 

 

mrad
m

rad

r

rad
k /.166

)2460945.0(015.0

.6109.0

)2460945.0(

.6109.0
=

−×
=

−
=

 (2.51) 
 
Note that the radius of the human aorta is r  = 
0.015m and we are also going to work with the 
absolute value of the wave number or the spatial 
frequency k  in this study. 
 
2.3 Calculation of the Phase Angle ( ε ′ ), 

Angular Frequency ( n′ ), Wave 
Number ( k ′ ) and Amplitude ( b ) of the 
HIV Vibration 

    
The gradual deterioration in the intrinsic 
parameters of the biological system of HIV/ AIDS 
infected person would make us believe that after 
a sufficiently long period of time all the active 
constituents or characteristic features of the 
vibration of the resident host (Man) would have 
been completely eroded by the influence of the 
HIV. The gradual depletion of the wave form of 
the carrier wave CW and its several properties as 
a result of the multiplier, characterizes a 
predominance of the HIV ‘parasitic wave’ after a 
very long period of time. This time must 
correspond to when the HIV disease would have 
degenerated to AIDS and there is the presence 
of only the variables of the HIV parasitic wave. 
On the basis of this argument the relations below 
holds. 
 













′=⇒=′−

′=⇒=′−
′=×⇒=′−

=×⇒=−
−

−

λλ

λελεε
λλ

λλ

kkk

nnn

bba

1660

6109.00
1051.20

101.20
7

6

    (2.52) 
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Upon dividing the above four relations in (52) 
with one another to eliminate λ , we get the 
following six relations. 

                                          
















′=′×⇒

′=′×⇒

′=′×⇒

=′×⇒

=′×⇒

=′⇒

−

−

−

−

−

ε

ε

ε

k

nk

n

bk

b

bn

3

9

7

8

6

1068012.3

1051204.1

1010869.4

1026506.1

1043755.3

3665.8

                         (2.53) 

 
Thus from all indications k ′  is related to ε ′  

according to; ε ′=′× −
k

3
1086.3 or ε ′=′ 3

1068.3 k  . 

Suppose we want to re-establish another 
relationship between k ′ and ε ′ then we can 
simply multiply through the sets of the relations in 

(2.53) by a factor of 3
1068012.3 × . Consequently, 

once this is done then a more realistic and 
applicable relation for both quantities can be 
found from the 2nd and 3rd relations in (2.53) after 
equating them to one another, that is, when

k ′=′ 000046555.00126505985.0 ε . Hence from simple 

proportion or ratio we can generally establish that 
 

.0000466.0 rad=′ε , mradk /.0127.0=′ ,

sradn /.1091.1 11−×=′ mb 101060.1 −×=     (2.54)  

 
Any of these estimated values of the HIV 
parameters shall produce a corresponding value 
of the multiplicative factor 13070=λ  upon 
substituting them into (2.52). Hence the range of 
the raising multiplier is 130700 ≤≤ λ .  
 
2.3.1 Determination of the attenuation 

constant ( η ) of CW 

 
Attenuation is a decay process. It brings about a 
gradual reduction and weakening in the initial 
strength of the basic intrinsic parameters of a 
given physical system.  In this study, the 
parameters are the amplitude ( a ), phase angle (
ε ), angular frequency ( n ) and the spatial 
frequency ( k ).  
 
The dimension of the attenuation constant (η ) is 

determined by the system under study. However, 
in this work, attenuation constant is the relative 
rate of fractional change σ  (FC) in the basic 

parameters of the carrier wave function. There 
are 4 (four) attenuating parameters present in the 
carrier wave. Now, suppose a , n , ε , k  
represent the initial parameters of the ‘host wave’ 
that is present in the carrier wave and λba − , 

λnn ′− , λεε ′− , λkk ′−  represent the final 
parameters of the ‘host wave’ that survives after 
a given time. Then, the FC is 
 
Fractional change, 
 








































 ′−
+

′−
+

′−
+

−
×=

k

kk

n

nn

a

ba λλ
ε

λεελ
σ

4

1  

(2.55) 
 

)(

1

stimeunit

FCFC
ii +==

−
= λλη  = 

)(

1

stimeunit

ii +− σσ
      (2.56) 

 

The dimension is per second ( 1−
s ).  Thus (2.56) 

gives 1
s0.0000763

−=η  for all values of

)13070,,3,2,1,0( K=iλ .  
 
2.3.2 Determination of the Attenuation or 

Decay Time ( t ) of the Carrier Wave CW  
 
The decay time is also very crucial in the 
determination of the total time that would elapse 
before the resultant interference will attenuate to 
zero - provided the interference is destructive.  
  
However, it is clear from the calculation that 
different attenuating fractional changes contained 
in the carrier wave function are approximately 
equal to one another. We can now apply the 
attenuation time equation given below. 
 

ληασ /)( te −=
 
                                        (2.57) 

 

 

σ
ηα

λ
ln








−=t

                                       
(2.58) 

 
In this case, α  is the HIV quality factor and in 
this study 3=α . The reader should note that 
since the multiplier is quantized (

13070,,2,1,0 K=λ ) the attenuation time of the 
decay time will also have varying values 
corresponding to each value of the multiplier. 
 
However, the quality factor α  is the same for 
any other human biological diseases that are not 
localized but different for other related human 
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diseases that are localized. The equation is 
statistical and not a deterministic law, it gives the 
expected parameters of the ‘host wave’ that 
survives after time t .  
 
2.3.3 Theory of the Interaction of  

Electromagnetic (EM) Waves with the 
Hiv Vibration  

 
In order to simplify our discussion somewhat, we 
shall assume that our axes have been chosen so 
that the positive y  axis is the direction of 
propagation of the EM wave; the transverse 
plane is then the xz  plane and the motion is 
constant with respect to the y  axis. Now 

suppose we assume specific orientation of the x  
and z axes with respect to the amplitude of the 
EM wave we get that 

                                               

)(sin xxx tykEE θω −−=
r

                        (2.59) 

 
                                              

)(sin zzz tkyEE θω −−=
r

                          (2.60) 

 
Usually the orientation may be assumed to be 

the same, hence 0EEE zx == ,       

          

θθθ == zx    
and  EEE zx

rrr

=+               (2.61) 

 
Thus generally, the equation of the time - 
dependent Electromagnetic EM wave is given by   
 

)(sin2 0 θω −−= tkxEE
r

                            (2.62) 

 

where 0E
 
(amplitude of the applied EM wave), 

ω (angular frequency), θ  (phase angle) and t  

(time). Note that the magnetic field B
r

is also 
implied in (2.62). This is true because, the 
magnetic B

r

and the electric E
r

 fields cannot 
exist independently of one another. On 
interpretation; k is the spatial frequency of the 
EM wave and x is the distance covered by the 
EM wave. The factor two in (2.62) makes             
it a complete or full electromagnetic EM        
wave. Details of this shall be made                 
clear in Fig. 7 and Fig. 8 as shown in section      
3. 
 
It should be mentioned here that all the symbols 
or parameters which may appear henceforth has 
nothing to do or does bear any similarity with the 

characteristics of the vibration of Man the ‘Host 
wave’.  
 
In natural systems, we can rarely find pure wave 
which propagates free from energy-loss 
mechanisms. But if these losses are not too 
serious we can describe the total propagation in 
time by a given force law )(tf . The propagation 
of the HIV ‘parasitic wave’ in the blood circulating 
system is affected by three major factors: (i) the 
effect of the mass m of the surrounding whole 
blood (ii) the damping effect of the permeability 
γ  of blood and (iii) the damping effect of the 

elastic µ  property of blood which rest in the red 
blood cells.  
 
However, this assumption takes into account 
only the Human blood which is different from 
(2.10) in which the elasticity of the blood vessels 
was taken into consideration. The equation of 
motion governing the propagation of the HIV 
‘parasitic wave’ in the human system therefore 
obeys the force law  
 

)(tf = yyym µγ ++ '"
                         (2.63) 

 
The unit of mass m of the surrounding whole 
blood is kg, the unit of the permeability of blood 
γ  is kg/s and the elastic µ  property of red blood 

cell is N/m or kg/s2 and this combination gives 
the dimension of force which is N or kgm/s2. The 
force law governing the propagation of the HIV 
parasitic wave in the Human blood circulating 
system will now be intercepted by 
electromagnetic EM wave according to the 
equation below. 
 

yyym µγ ++ '" )(sin2 0 θω −−= txkE
(2.64)  

 
We that (2.64) is a second order non 
homogeneous differential equation, and the 
general solution shall comprise of the 
complementary function CF say )(1 ty   and the 

particular integral PI say )(2 ty  . Now for the 
complementary function CF we equate the right 
hand side to zero and solve with operator D 
method, that is, 
 

0'" =++ yyym µγ                          (2.65) 
 

02 =++ y
y

yD
m

yD
µγ

                    (2.66) 
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02 =++ 







y

y
D

m
D

µγ
                   (2.67) 

 

2

4

2
















 −±−

=
mmm

D

µγγ

           (2.68) 

 

where  we have used the fact that  (
dt

d
D = ) in 

(2.66) and ( 0≠y  ) in (2.67). Now with the 
standard values of; skg /015.0=γ , 

27
/1092.6 skg

−×=µ and kgm 1050= . 

 

sradiD /)10466.210143.7( 56
1

−− ×+×−=  ;   

sradiD /)10466.210143.7( 56
2

−− ×−×−= .  

                     (2.69) 
 

iD 21 ωω ±−=
    

                                     (2.70) 
          

=1ω =
m2

γ 610143.7 −×  rad/s ;  

=2ω 















−

mm

µγ
4

2

1
2

= 510466.2 −× rad/s   

 (2.71) 
 
As a result, the complementary function CF 
which describes the motion of the human 
vibration in the absence of any given external 
field or driving force is therefore  
 

( )tBtAety
t

)(sin)(cos)( 22
1

1 ωωω += −
    

(2.72) 
 

The complementary function )(1 ty  represents 
the latent oscillating motion of the human whole 
blood in the micro vascular system. The equation 
(2.72) is similar to (2.2) just that k and ε  are 
absent from it. This is good because we are not 
subjecting the parameters of the resident host 
vibration to EM wave. However, the vibration of 
the HIV coexists with the vibration of the Host 
(Man) which is conveyed by the Human blood. 
As a result, we can now recast the latent 
oscillating vibration of the Host (with respect to 
the whole blood) to include the vibration of the 
HIV. Thus, without loss of dimensionality (2.72) 
can be written as  
 

{ +′−′+−′+−= ))((cos 2

)'1(

1 )( λελωλλ
λω

tnxkb
tn

ety
 

}))((sin 2 λελωλλ ′−′+−′ tnxkb                (2.73) 
 
Consequently, we have taken the constants of 
integration λbBA ==  as the amplitude of HIV 
vibration. This recast is possible because the HIV 
has its own independent existing vibration before 
it entered the human system. We can see that 
(2.73) is just a slight modification of (2.72). This 
is due to the fact that a second order differential 
equation must have two possible constants of 
integration which we already assumed to be        
( λb ). In order to obtain the general solution say

)(ty , of (2.64), we have to determine the 
particular integral PI associated with the CF. In 
any case let us assume that the particular 
integral PI has a solution of the form   
 

( ) ( ){ }θωθωω −−+−−= − txkDtxkCety t sincos)(2    
(2.74) 

 
Where C  and D  are also constants of 
integration to be determined from the initial 
boundary conditions.  
 

 

)(2 ty′ ( ) ( ){ }θωθω
ω

ω −−+−−
−

−= txkDtxkC
t

e sincos  

+ ( ) ( ){ }θωωθωω
ω

−−−−−
−

txkDtxkC
t

e cossin                                                                     (2.75)   
                                  

)('2 ty′ ( ) ( ){ }θωθωω ω
−−−−−−=

−
txkDtxkCe

t
cossin2                                                  (2.76) 

 
 
 
 
 



 
 
 
 

Enaibe et al.; JSRR, 13(3): 1-28, 2017; Article no.JSRR.30870 
 
 

 
13 

 

We can now substitute (2.74), (2.75) and (2.76) in their appropriate positions in (2.64).  
 

  
( ) ( ){ }






 −−−−−−

− θωθωω ω
txkDtxkCem

t
cossin2

 
−  

 

( ) ( ){ }( θωθωωγ ω −−+−−− txkDtxkCte sincos − ( ) ( ){ })θωθω −−−−− txkDtxkC cossin  
 

+ ( ) ( ){ }





 −−+−−

− θωθωµ ω
txkDtxkCe

t
sincos  = )(sin2 0 θω −− txkE

           
         (2.77) 

 

By equating the coefficients of cosine to zero and of sine to 02E
 
we get after simplification that 

 

( ) ( ) 0
2 2EeDeCm

tt =−−−− −− ωω µωγωγω                                                                         (2.78) 

 

( ) ( ) 02 =−−− CDm µωγωγω                                                                                               (2.79) 

 

By solving (2.79) and (2.80) simultaneously for the constants C and D we get after some 
simplification 
 

( )
( ) ( ) t

em

Em
C

ωµωγωγω

ωγω

−−+−

−−
=







 22

02

2

2

                                                                                 (2.80) 

 

( )
( ) ( ) tem

E
D

ωµωγωγω

µωγ
−






 −+−

−−
=

222

02

   

                                                                          (2.81) 

 

( )
( ) ( )








−−





 −+−

−−
=

−

− )(cos
2

)(
222

2
0

2

θω
µωγωγω

ωγω
ω

ω txk
em

Em
ety

t

t −  

  
( )

( ) ( ) 







−−





 −+−

−−
−

)(sin
2

222

0 θω
µωγωγω

µωγ
ω

txk
em

E
t

                                               (2.82)     

                                
Hence the general solution )(ty  of equation (2.64) is given by the addition of CF and the PI, hence 

 

)()()( 21 tytyty +=                                                                                                                       (2.83) 
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{ +′−′+−′=
+−

))((cos)( 2

)'1(
λελωλλ

λω
tnxkbety

tn }))((sin 2 λελωλλ ′−′+−′ tnxkb  
 

  − ( )
( ) ( )





−−
−+−

−
)(cos

2
222

0
2

θω
µωγωγω

ωγω
txk

m

Em + ( )
( ) ( ) 





−−
−+−

−
)(sin

2
222

0 θω
µωγωγω

µωγ
txk

m

E

   

   

 

    (2.84) 

 
Hence, the general equation given by (2.84) is the equation of motion of the interception of the EM 
wave with the HIV ‘parasitic wave’ in the human system. In other to get a more stable state of the 
displacement vector of the equation of motion (2.84) we then minimize it with respect to time. That is, 
 

                    
=

dt

dy { ))((cos)( 2

)'1(

1 λελωλλλω λω ′−′+−′′+− +−
tnxkben

tn
  +  

                                                     }))((sin 2 λελωλ ′−′+−′ tnxk +  

    { ))((sin)( 22

)1( λελωλλωλλω ′−′+−′′+′+−
tnxknbe

tn − }))((cos 2 λελωλ ′−′+−′ tnxk  

 − ( )
( ) ( )








−−





 −+−

−
)(sin

2
222

0
2

θω
µωγωγω

ωωγω
txk

m

Em − ( )
( ) ( ) 








−−





 −+−

−
)(cos

2
222

0 θω
µωγωγω

ωµωγ
txk

m

E

        

   (2.85) 

 
2.4 Steady – State flow Characteristics of the Equa tion of Motion of the Interception of 

the EM Wave and HIV Parasitic Wave: 
 
The equation of motion of the whole blood in a HIV infected person is influenced by the superposition 
of two harmonic vibrations. This combination can either enhance or inhibit the steady - state flow 
characteristics of the blood medium. However, it is shown here that the combined effect of the two 
incoherent source vibrations strictly inhibits the flow of blood and its composition. At a steady-state the 
force giving rise to the equation of motion of the interception of the electromagnetic EM wave with the 
combined vibrations of the HIV and Man is zero, that is dtdy /  = 0, as a result, (2.85) gives 

  

{ ))((cos)( 2

)1(

1 λελωλλλω λω ′−′+−′′+− ′+−
tnxkben

tn + }))((sin 2 λελωλ ′−′+−′ tnxk  

{ ))((cos)( 22

)1( λελωλλωλλω ′−′+−′′+− ′+−
tnxknbe

tn − }))((sin 2 λελωλ ′−′+−′ tnxk  

+ ( )
( ) ( )





−−
−+−

−
)(cos

2
222

0 θω
µωγωγω

ωµωγ
txk

m

E
 − ( )

( ) ( ) 





−−
−+−

−
)(sin

2
222

0
2

θω
µωγωγω

ωωγω
txk

m

Em
0=        (2.86) 

 
Let us apply the addition formula for trigonometric identity to redefine (2.86) term by term. Hence with 
the implementation of 
 

  )(cossincos
22 δ±+=+ xBAxBxA                                                                                 (2.87)          

   

                                    
A

B
m==

δ

δ
δ

cos

sin
tan                                                                                     (2.88)
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                       0)(cos =+−− βθω txk                                                                                         (2.89) 

 
where δ , α  and β  are the epoch of the motion. It is clear that δ and α is the accelerating and 
velocity components of the epoch of the motion of the HIV in combination with the Human system, 
and β  is the epoch of the motion associated with the applied EM wave.  They represent a shift in the 
phase angles as a result of the motion. With the implementation of (2.88), we can calculate the 
various shifts in the respective phase angles of the general equation of motion as indicated by (2.89). 
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β
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                          (2.93) 

 
We can (2.93) multiplicatively non-resistant by 

assuming the same value of β  = )4/(45
0 π .  

Then 
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
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−
=

µωγ
ωγω 2

6198.1
m

                          (2.95) 

 

 m

m

2

)6198.1(4)6198.2(6198.2 2 µγγ
ω

−±
=  (2.96) 

 
The human blood has permeability γ  or 
penetrability value of about 0.9 kg/min or 0.015 
kg/s. The elasticity µ of red blood cells has a 

value that ranges between 0.108 – 2.146 dyn/cm 
x 10-3 with a median value of 0.692 x 10-3 dyn/cm 
or 6.92 x 10-7N/m (6.92x10-7kg/s2). The density of 
blood plasma is approximately 1025 kg/m3 and 
the density of blood cells circulating in the blood 
is approximately 1125 kg/m3. The Blood plasma 
and its contents are known as whole blood and 
the average density of whole blood for a human 
is about 1050 kg/m3 [18,19].  
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)1050(2

)/1092.6()6198.1()1050(4)/015.06198.2()/015.0(6198.2 272

kg

skgkgskgskg −×−×±
=ω

         

     (2.97) 

 
i000026786.0000018714.0 ±=ω      (Radian/second)                                                               (2.98) 

 
This gives the absolute value of the angular frequency of the applied oscillating electromagnetic EM 
wave as  
 
  ondradian sec/00003267.0=ω                                                                                                      (2.99) 
 
The angular frequency ω  of the applied oscillating EM wave will also have its own inbuilt phase angle 
which is 
 

 
radian9611.055

000018714.0

000026786.01tan 0 ±=±=±−= 






ζ
                                                              

(2.100) 

 
The epoch of the equation of the electromagnetic EM wave and the combined HIV and the Host wave 
takes place either to the left direction ( 4/π+ ) or to the right direction ( 4/π− ).  
 
2.5 Evaluation of the Phase Angle and the total tim e of Exposure 
  
There are three oscillating phases that are associated with the equation of motion. The oscillating 
phase associated with the applied EM wave, the oscillating phase associated with the interfering HIV 
parasitic wave and the oscillating phase associated with the Human blood system. For complete 
destructive interference to occur the phase difference between the applied oscillating electromagnetic 
EM wave and the combination of the vibrations of the HIV and that of the Human blood must be equal 
to 180o (π ). That is, the phase difference equation is given by 

 

           −+−− )( βθω txk ( ) ( )( ) παλελωλδλελωλ =+′−′+−′++′−′+−′ tnxktnxk )()( 22            (2.101) 

 

                  
( ) ( ) παδλελωλβθω =++′−′+−′−+−− 2)(22 2 tnxktxk                       (2.102) 

 

         ( ) ( ) πλελωλβθω =′−′+−′−+−− 2)(22 2 tnxktxk            )( αδ −=                (2.103) 
 

                    ( ) ( ) πλελωλπθω 4)(8444 2 =′−′+−′−+−− tnxktxk                            (2.104) 
 
There are two basic dependent variables which need to be determined from equation (2.104). The 
variables are the phase angle of the applied EM wave (θ ) and the total time ( t ) – the total time of 
exposure of the HIV/AIDS infected person to the EM radiation. As it is, we want to assume any 
arbitrary value for the time and use the value to calculate the phase angle of the EM radiation. Hence, 
from the phase difference equation (2.104) we can redefine the phase angle of the applied oscillating 
EM wave as 
 

                    

( ) ( )
4

)(8344 2 λελωλπω
θ

′−′+−′−−−
=

tnxktxk
                                (2.105) 

 
We can now set =λ 0, 1, 2, . . . , 13070. Let us not forget that the phase difference given by equation 

(2.105) states that irrespective of the values of λ and t , the value of the phase angle θ  cancels out 
the effect of the HIV vibration. This will certainly force the vibration of the HIV in the resident host to 
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attenuate to zero.  The total time t  of exposure 
can be fixed and we are taking it as t  = 25 
minutes (1500 seconds). As a result the 
corresponding value of the raising multiplier can 
be found from the relation 
 

λ
λ )1(1500 −

=t
 
seconds                  (2.106) 

 
As part of the boundary conditions we can allow 
the spatial frequency k  of the applied EM wave 
to assume any arbitrary value since what is 
responsible for destructive interference and 
attenuation in waves is mainly the phase angle 
difference of the interfering waves which must be 
equal to 1800 ( π ). As a result, we have in this 
study set the value k = 150 rad/m.  
 
The assumption made about the total time of 
exposure is based on the fact that it takes the 

human blood about 25 minutes (1500 seconds) 
to travel from the Heart to the tissues and back to 
the heart and this completes one cycle. 
Consequently, the HIV/AIDS candidate that is 
undergoing the radiation therapy may either 
stand on or stay away from the EM radiation 
device. AS we all know the height of an individual 
cannot exceed 2.5 metres. Hence, in this work 
we are going to set or assume the value of x  = 
2.5 metres.  
    

2.6 Evaluation of the Amplitude 0E

(maximum displacement) of the 
applied Oscillating EM Wave 

 
In order to evaluate the maximum displacement 

or amplitude 0E  of the applied oscillating EM 

wave we need to recall and simplify (2.89) to          
get 
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Let us now square through equation (2.107) in an attempt to make 0E (amplitude) the subject of the 

formula.  
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This can further be simplified with the use of trigonometric identity to realize 
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The equation of motion of the intercepting EM wave with the HIV vibration in the Human system is a 
maximum provided the oscillating phases are equal to zero. That is 
 

))(( 2 δλελωλ +′−′+−′ tnxk = =+′−′+−′ ))(( 2 αλελωλ tnxk )( βθω +−− txk 0=          (2.110) 
 
As a result, equation (2.109) after the accurate replacement of (2.106) basically yields the following 
equation. 
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Equation (2.114) therefore gives the amplitude (maximum displacement) of the applied oscillating EM 
wave E

r

 in relation with the HIV vibration in the Human micro-vascular system. It is a plane wave and 
the dimension is metres m. Now that we have determined the amplitude 0E  we can now substitute 

equation (2.114) into the EM field equation (2.62). As a result, the general displacement equation of 
the applied oscillating electromagnetic wave after the substitution is 
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Thus equation (2.115) is the required equation of 
the EM wave that could be applied for the 
selective annihilation of the dynamic 
characteristics of the vibration of the HIV from 
the Human system. The unit is metres m.  
 
Fourier series has long provided one of the 
principal methods of analysis for mathematical 
physics, engineering, and signal processing. It 
has spurred generalizations and applications that 
continue to develop right up to the present. While 
the original theory of Fourier series applies to 
periodic functions occurring in wave motion, such 
as with light and sound, its generalizations often 
relate to wider settings, such as the time-
frequency analysis underlying the recent theories 
of wavelet analysis and local trigonometric 
analysis. Periodic functions arise in the study of 
wave motion, when a basic waveform repeats 
itself periodically [20]. 
 
In other to make equation (2.114) and equation 
(2.115) periodic function we can further carryout 

a Fourier 
series

 
expansion on the exponential 

term and the sinusoidal term which are the only 
variable functions it contains. The Fourier series 
expansion is very relevant as it helps to 
transform the equation into periodic functions. 
Thus 
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(2.116) 
 

That is, the functions can be separately 
expanded in Fourier series and thereafter we 
multiply the results term by term.  
 

However we do not have to go about (2.116) 
laboriously when it can be shown that the direct 
substitution of the Fourier series expansion of 
only the exponential term into (2.114) and 
(2.115) shall produce the same periodic results. 
As a result, we are going to expand only the 
exponential function in Fourier series. 
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Thus we can rewrite (2.114) and (2.115) based on (2.117) separately in the form 
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The Fourier series expansion of the exponential function gave two possible terms: the constant term 
without unit and is given by (A.27) and the frequency term with the unit of (s-1) which is given by 
(A.29). However, the implementation of the frequency term (s-1) in (2.118) and (2.129) would result to 
velocity (m/s). Thus we can assume that it is the velocity with which the amplitude and the applied EM 
wave are moving.   
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The frequency term of the Fourier series expansion of the exponential function which is given by 
(A.29) can also be interpreted as the behaviour of the applied EM wave away from the origin. This 
term can be ignored from the series particularly if we are investigating the property of the EM wave 
around the origin and not away from the origin. Consequently, we are not going to implement the 
frequency term in our work. Now the constant term of the Fourier series expansion of the exponential 
function which is given by (A.27) is of the form:  
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As it is, equation (2.120) has no unit upon evaluation. We can now substitute (2.120) into (2.118) and 
get 
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Hence the Fourier series expansion of the amplitude of the applied EM wave is given by equation 
(2.121). Thus the amplitude which is the maximum displacement of the applied oscillating EM wave 
has a unit of metres m. On the substitution of (2.121) into (2.119) we realize the displacement 
equation of the applied oscillating EM wave which is given by: 
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Hence the unit of the displacement applied oscillating EM wave with Fourier series expansion which is 
given by (2.122) is also metres m.  
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3. RESULTS AND DISCUSSION 
 
It is evident from Fig. 1 which is the graphical 
representation of equation (2.2) that in the 
absence of the HIV parasitic wave, the frequency 
of the Human vibration oscillates between ±  2.1 
x 10-6m. It has a regular equal band width and 
phase angle 0.6109 radian. However, based on 
the value of the raising multiplier λ = 13070 used 

in computing the time in (2.58) the wave-function 
of the Host goes to zero around 328479340 
seconds (10 years). Note that this is not the age 
of Man, although, the expected age of Man can 
be calculated from it if the multiplier is suitably 
adjusted. Obviously, from Fig. 1 the vibration of 
the resident host wave has a regular frequency, 
constant amplitude and hence the displacement 
is consistently normal.  

 
Table 1.  Summary of the quantitative values of the vibration  of the Resident ‘Host wave’    

(Man) and the vibration of the HIV ‘parasitic wave’ , the raising multiplier and the decay time 
 

Phys ical Quantity  Symbol  Value  
Amplitude of the Human host wave a  2.1 x 10-6 m 
Angular frequency of the Resident Host wave n  2.51 x 10-7 rad/s 
Spatial frequency of the Host wave k  166 radian/m 
Phase angle of the Host wave ε  0.6109 radian 
Amplitude of the HIV parasitic wave b  1.6 x 10-10 m 
Angular frequency of the HIV parasitic wave n′  1.91 x 10-11  rad/s 
Spatial frequency of the HIV parasitic wave k′  0.0127 rad/m 
Phase angle of the HIV parasitic wave ε ′  0.0000466 radian 
The raising multiplier λ  0, 1, 2, 3, . . . , 13070 
Maximum decay time of the carrier wave CW  t  328479340 seconds (10 years) 

 
Table 2. Shows how the generating EM wave device wi ll be calibrated 

 
Physical quantity  Symbol  Range / Unit  
The phase angle of the Applied EM wave θ  -457 ≤≤ θ  373 

(radian) 
The spatial frequency of the Applied EM 
wave 

k  150 radian/m 

Angular frequency of the applied EM wave ω  0.00003267 radian/second 
Angular frequency of the Human system 
with regard to the Permeability of blood 
medium 

1ω  
0.000007143 radian/second 

Angular frequency of the Human system 
with regard to the elasticity of Human red 
blood cell 

2ω  
0.00002466 radian/second 

The total time of exposure t  0 ≤≤ t  1500 s 
1500seconds = (25 minutes) 

Actual total time of exposure τ  0.0208 seconds 
Total distance to be covered by the EM 
wave 

x  2.5 metres 

Spatial oscillating phase of the Applied 
EM wave 

)(sin θω −− txk  -1 ≤−−≤ )(sin θω txk  +1 

The applied EM wave 
(without Fourier series expansion) 

E
r

 -8 x 10-6  ≤≤ E
r

 + 8 x 10-6 

 (metres) 
The applied EM wave 
(with Fourier series expansion) 

E
r

 -120  ≤≤ E
r

 +137 

(metres) 
 
 
 

 
 



 
 
 
 

Enaibe et al.; JSRR, 13(3): 1-28, 2017; Article no.JSRR.30870 
 
 

 
22 

 

The Fig. 2 is the graphical representation of 
equation (2.3). It is evident from the graph that 
the frequency of the HIV vibration first increases 
before it attains a regular frequency of oscillation 
between ± 1.6 x 10-10 m. It has a regular equal 
band width and phase angle 0.0000466 radian. 
From the figures the phase angle of the Human 
vibration leads the phase angle of the vibration of 

HIV, that is, the HIV phase angle therefore lags 
the phase angle of Man. However, based on the 
same argument of the raising multiplier λ = 
13070 the wave-function of the HIV vibration also 
goes to zero around 328479340 seconds (10 
years).  

 

 
 

Fig. 1. Shows the graph of the displacement vector of the vibration of the resident Host wave 
(Man) as a function of time and multiplier. The gra ph represents equation (2.2) where 

)sin(cos. εε += rkrk
rr

and r =0.015 m 
 

 
 

Fig. 2. Shows the graph of the displacement vector of the HIV vibration (parasitic wave) as a 
function of time and the multiplier. The graph repr esents equation (2.3) where 

)sin(cos. λελελλ ′+′′=′ rkrk
rr

and br = m (where we take the space radius of the HIV as the  
same as the amplitude of the HIV vibration) 
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It is also evident from fig. 1 and fig. 2 that the 
vibration of the HIV (parasite wave) and that of 
Man (Host wave) are oppositely directed and so 
they are out of phase. This factor satisfies the 
fact that both vibrations are actually incoherent. It 
is the incoherent nature of their source function 
that causes the carrier wave to attenuate to zero 
after a specified time when they are allowed to 
interfere with one another. 
 
The spectrum of the displacement vector of the 
carrier wave CW as a function of time is shown in 
Fig. 3. From our calculation, the first peak below 
the equilibrium position (although not very 
distinct) has coordinates; λ =3000, t = 3405160 
seconds (about 39 days or 1 month 9 days). This 
region indicates that the Human biological 
system is becoming aware and partially 
responding to the presence of a strange body 
(HIV).   
 

This is followed by a marked and more prolonged 
elongated peak with coordinates; λ = 6000, t  = 
16035887 seconds (about 185 days or 6 
months). The predominant nature of this peak 
shows that the Human system is now responding 
fully to the presence of the absolute 
manifestation of a strange body (HIV). It 
therefore takes about 6 months for the HIV 
parasite to incubate before its absolute 
manifestation is felt within the Human system.  
 

Hence, according to the literature of clinical 
disease the 6 months of incubation is referred to 
as the window period. In other words, the HIV 
‘parasitic wave’ does not take immediate 
absolute effect on the human system when it is 
contacted. Within this interval of time, there is a 
constant agitation by the intrinsic parameters of 
the ‘host wave’ to resist, thereby suppressing the 
destructive tendency of the interfering HIV 
‘parasitic wave’. During this period, although 
unnoticeable as it may, but so much imaginary 
harm would have been done to the constituent 
parameters of the biological system of the host 
(Man).   
 

After now there are two other definite peaks in 
the CW curve; the third of the peaks is at time t = 
52059148 seconds (603 days = 20 months = 1 
year and 6 months) in which the CW 
displacement curve is almost zero.  The fourth 
peak is at time t = 111087919 seconds (1285 
days = 42 months = 3 year and 6 months) and 
the CW displacement curve increases negatively 
again.  
 

These two inflection points, occurs about 20–42 
months before the HIV disease translates into 

AIDS. In these region the vibrating features of 
the HIV is now becoming equal to the vibrating 
features of Man the resident host. Of course, in 
the literature of clinical disease this period of 
agitation for equal oscillating features is referred 
to as the change to more rapid increase in viral 
load (disease-causing).  
 

From the graph the final discontinuity is in the 
positive region. The final discontinuity in the 
carrier wave CW curve is very sharp with very 
narrow band width. The CW curve in this region 
has coordinates; λ = 12859, t  = 221866125 
seconds (about 2567 days = 85 months or 7 
years) and the corresponding carrier wave 
displacement )(ty = -3.1632 x 10-7m. It is at this 

point that the HIV disease degenerates into 
AIDS. Thus, the HIV translates into AIDS after 7 
years counting from the day it is contacted, and 
this is also in agreement with the clinical 
literature of HIV/AIDS disease.  
 
After this region the carrier wave is finally 
brought to rest. Our calculation shows that in the 
absence of specific treatment, the HIV infection 
degenerates to AIDS after 7 years and that is 
when the multiplicative factor 1307012859 ≤≤ λ . 
Consequently, the agitation for equal oscillating 
features between the HIV and the resident host 
(Man) would have been attained. This period 
involves a steady decay process which results to 
a complete reduction and weakening in the initial 
strength of the host latent vibrating features.  
 
In this case the displacement of the carrier wave 
which describes the coexistence of the biological 
system of Man and the HIV ceases to exist – the 
phenomenon called death around 328479340 
seconds (10 years) and the multiplicative factor
λ would have attained the critical value of 
13070. 
 

The graph of the phase angle of the EM wave 
which represents equation (2.105) is shown in 
Fig. 4. The phase angle of the applied EM wave 
is directly proportional to the raising multiplier. It 
has a maximum value of 372.5800932 and a 
minimum value of -456.0576541. This shows that 
as the multiplier increases with time the phase 
angle also decrease and becomes more 
negatively large. 
 

It should be observed that the amplitude 0E  and 

the displacement of the applied EM wave E
r

 
given by (2.114) and (2.115) are not expanded in 
Fourier series; they are represented by Fig. 5 
and Fig. 6 respectively. But the amplitude 0E  
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and the displacement of the applied EM wave E
r

 
given by (2.121) and (2.122) are expanded in 
Fourier series; they are represented by Fig. 7 

and Fig. 8 respectively. It is very clear that 
Fourier series expansion increases the band 
width of the applied electromagnetic EM wave. 

 

 
 

Fig. 3. Shows the graph of the displacement vector of the carrier wave CW against time as a 
function of the multiplier. The graph represents eq uation (2.5). The amplitude of the carrier 
wave is actually made up of the imaginary and real part, 21 iAAA += . This shows that the 

motion is actually two-dimensional (2D). Thus 1A and 2A  are the components of the amplitude 

in x and y - directions, and A is tangential to the phase of the moving amplitude in the carrier 
wave 

 

 
 

Fig. 4. Shows the graph of the phase angle θ of the applied oscillating electromagnetic EM 
wave as a function of the multiplier λ = 0, 1, 2, . . ., 13070. The phase angle decreases 

consistently as it leaves the source and it is dire ctly proportional to the raising multiplier. The 
decrease in the phase angle of the applied oscillat ing EM wave is arithmetically linear and it 

ranges 373456 ≤≤− θ . The graph represents equation (2.105) 

-2.5E-06

-0.000002

-1.5E-06

-0.000001

-5E-07

0

0.0000005

0.000001

0 50000000 100000000 150000000 200000000 250000000 300000000 350000000

C
a

rr
ie

r 
w

a
v

e
 y

 (
m

)

Time (seconds)

Carrier wave CW / Time 

(comprising of Human vibration and HIV vibration)

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 2000 4000 6000 8000 10000 12000 14000

T
h

e
 p

h
a

se
 a

n
g

le
 o

f 
th

e
 E

M
 w

a
v

e

Tne multiplier

Phase angle of the Applied EM wave/The multiplier



 
 
 
 

Enaibe et al.; JSRR, 13(3): 1-28, 2017; Article no.JSRR.30870 
 
 

 
25 

 

 
 

Fig. 5. shows the graph of the Amplitude 0E of the applied electromagnetic EM wave as a 

function of time t = 0, 1, . . . , 1500   seconds and multiplier and λ = 0, 1, 2, . . ., 13070). The 
graph represents equation (2.114) without Fourier s eries expansion 

 

 
 

Fig. 6. Shows the graph of the Displacement of the applied oscillating electromagnetic EM 

wave E
r

without Fourier series expansion. It is a function of time t  = 0, 1, . . . , 1500 seconds 
and the multiplier λ .= 0, 1, 2, . . . , 13070. The band spectrum of the applied electromagnetic 

EM wave   increases consistently as it leaves the s ource. The graph represents equation 
(2.115) without Fourier series expansion. It is obv ious that Fig. 6 is a full displacement of the 

EM wave that complements Fig. 5 
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Fig. 7. Shows the graph of the amplitude 0E  of the applied oscillating electromagnetic EM 

wave as a function of time t = 0,. . . , 1500 seconds and the multiplier λ = 0, 1, 2, . . ., 13070. The 
graph represents equation (2.121) with Fourier seri es expansion 

 

 
 

Fig. 8. Shows the graph of the applied electromagne tic EM wave E
r

as a function of time t = 0, 

1, . . . , 1500 seconds  and multiplier and λ = 0, 1, 2, . . ., 13070). The graph represents equa tion 
(2.122) with Fourier series expansion 

 
Clearly, from Fig. 5 the amplitude of the applied 
EM wave is directly proportional to the multiplier 
and it has a maximum value of 3.95896 x 10-

6 metres and a linear arithmetic increment of 
0.0003. 
 
Also from Fig. 6 the displacement of the applied 
oscillating EM wave is represented by equation 

(2.115). It is evident from Fig. 6 that the 
displacement vector of the applied EM wave 
increases consistently during the interception 
with the HIV vibration resident in the Human 
system. The displacement of the applied EM 
wave E

r

 has a value of about ± 7.89765 x 10-6 
metres. The band width of the applied EM wave 
increases as the multiplier is increased.  
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In consideration of Fig. 7 the amplitude 0E of the 

applied EM wave only lie in the positive plane 
and it does not oscillating between any fixed 
origin and equilibrium position. Note that Fig. 7 is 
the graphical representation of (2.121). The 
amplitude of the applied EM wave first attains a 
value of 22.196773 metres as it moves from the 
origin.  The amplitude of the applied EM wave 
goes to zero in the interval of the multiplier [8000, 
9000] and then it rises again until it attains a 
maximum value of about +68.848055 metres.  
 
In consideration of Fig. 8 which represents 
equation (2.122) the displacement of the EM 
wave has a maximum positive value of 
+136.483258 metres and a minimum negative 
value of about -119.6263106 metres. It is 
obvious that Fig. 8 is the complement of Fig. 7. 
That is, the displacement of the applied EM wave 
is twice the amplitude of the applied EM wave. 
Although, this is unusual as it is expected that 
the amplitude is the maximum displacement. 
This difference is as a result of the factor of      
two which was initially introduced in equation 
(2.62).  
 
It is also evident from Fig. 8 that initially, when 
the EM wave interferes with the HIV parasitic 
wave as part of the carrier wave CW the 
displacement of the applied EM wave first 
reduces from a maximum value of +136.483258 
m to a value of +41.112263 m when the 
multiplier λ  is about 3560. After this time the 
applied EM wave decreases. The simple 
explanation for the initial decrease in the 
displacement of the applied EM wave is that the 
dynamic characteristics of the HIV vibration in 
the carrier wave are now putting up a very 
serious resistance to the applied EM wave. 
  
The spectrum of the interception of the applied 
oscillating EM wave with the HIV parasitic wave 
in the carrier wave, as shown in Fig. 8 shows a 
constriction in the interval when the multiplier λ
[8000, 9000] with a corresponding time interval t  
[1499.8125, 1499.8333] seconds. Therefore, the 
actual exposure time for the HIV/AIDS patient 
who is undergoing the radiation therapy is about 
0.0208 seconds. The displacement of the applied 
oscillating EM wave tends to zero within this 
interval. The simple explanation for the constraint 
is that the applied EM wave has successfully 
eradicated the dynamic characteristics of the HIV 
vibration within this region or interval to a zero 
vibration thereby rendering the HIV parasitic 
wave in the Human system ineffective. 

However, the displacement of the applied EM 
wave increases again when the multiplier λ is 
about 9000. The increase is consistently regular 
until the multiplier λ  is about 13067 and the 
applied oscillating EM wave now revert to the 
maximum initial value of +136.483258 m before it 
finally goes to zero or a value of about 9.336 x 
10-6 m when the multiplier is 13070. The simple 
explanation here is that the spectrum of the 
displacement of the applied oscillating EM wave 
becomes predominant after it has successfully 
eradicated the vibration of the HIV from the 
resident host (Man) and the applied EM wave will 
eventually attenuate to zero. 
 
4. CONCLUSION 
 
This study shows that the process of attenuation 
in most physically active system does not 
obviously begin immediately. The wave function 
that defines the activity and performance of most 
active system is guided by some internal factor 
which enables it to resist any external or internal 
influence that is destructive in nature. The 
anomalous behaviour exhibited by the applied 
EM wave at some point during the interception, is 
due to the resistance pose by the HIV parasitic 
wave in an attempt to annul the effects of the 
interfering EM wave. It is evident from this work 
that when the HIV parasitic wave is undergoing 
attenuation due to the influence of the applied 
EM wave, it does not steadily or consistently 
come to rest; rather it shows some resistance at 
some point in time during the damping process, 
before the HIV parasitic wave finally comes to 
rest or completely destroyed. It is clear from this 
study that the actual exposure time for the 
HIV/AIDS patient who is undergoing the radiation 
therapy is about 0.0208 seconds. Thus this study 
has to some extent provided the means of 
determining the basic activity and performance of 
HIV/AIDS disease in the human blood circulating 
system. As a consequence of knowing the 
vibrating parameters of the HIV, it can then be 
selectively destroyed from the human system by 
anti-vibrating component. This work thus 
identifies the matrix of scientific priorities that 
should bring us measurably closer to our vision 
of developing a permanent cure to HIV/AIDS 
condition which has been the global problem for 
about 34 years now. 
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