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Abstract
We propose a simpler derivation of the probability density function of Feller Diffusion by using
the Fourier Transform on the associated Fokker-Planck equation and then solving the resulting
equation via the Method of Characteristics. We use the derived probability density to formulate
an exact simulation algorithm whereby a sample path increment is drawn directly from the
density. We then proceed to use the simulation to verify key statistical properties of the process
such as the moments and the martingale property. The simulation is also used to confirm
properties related to hitting time probabilities. We also mention potential applications of the
simulation in the setting of quantitative finance.
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1 Introduction
Feller Diffusion, which is also known as the Bessel Squared Process of dimension zero [1, 2, 3, 4], is
in the class of Îto stochastic differential equations (SDEs) known as square root diffusions [5]. In
general, square root diffusions have a drift term in addition to a multiplicative square root noise term.
Feller Diffusion is a special case in that it is driftless. Feller’s motivation in this area was genetics [2]
with natural extensions to biological systems and population dynamics. Rigourous studies of these
processes can be found in references [6, 7]. Square root diffusions also have application in physics -
in particular in the area of branching processes and percolation theory [8] and phase transitions with
absorbing states [9]. In addition to the science applications listed above, there are applications of
square root diffusions in quantitative finance - e.g. the CEV Model for asset pricing [10, 11, 12, 13]
and the well-known CIR Model for interest rate modeling [14, 15, 16].
The Îto SDE describing Feller Diffusion is given by:

ẋ(t) = σ
√
x · ξ(t) (1.1)

x(to) = xo > 0. (1.2)

Here x(t) denotes the position of a random walker following the trajectory given by equation (1.1)
with initial condition xo at (initial) time to, and ξ(t) is a Gaussian white noise independent of x(t),
with amplitude parameter σ, and the following correlation functions describing its statistics:

〈ξ(t)〉ξ = 0 (1.3)
〈ξ(t)ξ(t′)〉ξ = δ(t− t′). (1.4)

The averaging 〈· · · 〉ξ denotes an average with respect to the realizations of the stochastic process
ξ(t). Due to presence of the square root term the dynamics are such that the random walker’s
postion is always positive and if it reaches the origin it will stay there (i.e. the origin acts as an
absorbing barrier).

The Fokker-Planck equation corresponding to the SDE (1.1) and initial condition (1.2) is given by

∂

∂t
P (x, t) =

σ2

2

∂2

∂x2
[xP (x, t)] (1.5)

P (x, to) = δ(x− xo) (1.6)∫ ∞
0

P (x, t) dx = 1. (1.7)

Here P (x, t) = P (x, t|xo, to) describes the probability density of the position of the random walker
at a particular time via the following relation:

P (x, t)∆x = Probability walker ∈ [x, x+ ∆x] at time t

2 Derivation of the Probability Density
The first step in deriving the probability density is to use the Fourier transform on P (x, t):

P̂ (k, t) =

∫ ∞
−∞

P (x, t)e−ikxdx =

∫ ∞
0

P (x, t)e−ikxdx

The Fokker-Planck equation (1.5) now becomes

∂

∂t
P̂ (k, t) =

−iσ2k2

2

∂

∂k
P̂ (k, t) (2.1)

P̂ (k, to) = exp [−ikxo] (2.2)
P̂ (k = 0, t) = 1. (2.3)
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This partial differential equation (PDE) can be solved by the method of characteristics (please refer
Appendix 4) to yield

P̂ (k, t) = exp

[
−ikxo

1 + ikσ2

2
(t− to)

]
(2.4)

Note that the initial condition given by equation (2.2) and normalization given by equation (2.3)
are easily verified. The characteristic function ϕ(k, t) can be easily derived by the transformation
k → −k in the Fourier transform, i.e. using the relation:

ϕ(k, t) = P̂ (−k, t)

This gives the characteristic function for the probability density governing the SDE (1.1) with initial
condition (1.2) as

ϕ(k, t) = exp

[
ikxo

1− ikσ2

2
(t− to)

]
(2.5)

This is the characteristic function of a non-central chi-squared distribution with zero degrees of
freedom (please refer to Appendix 4) where:

1. The random variable has been scaled such that x→ 4
σ2(t−to)

x

2. The non-centrality parameter is λ = 4xo
σ2(t−to)

3. P (x, t|xo, to) = g
(

4x
σ2(t−to)

; 4xo
σ2(t−to)

)
, where g(x;λ) is the density function of a non-central

chi-squared distribution with zero degrees of freedom with non-centrality parameter λ.

The non-centrality parameter [17] enables us to estimate the probability that the random variable
takes the value 0 as e−λ/2. In terms of the stochastic process (1.1) this is the absorption probability
F (t), which is the probability the random walker gets absorbed [4] at the origin at time t given the
starting point xo:

F (t) = exp

[
−2xo

σ2(t− to)

]
(2.6)

Note that in the limit t → ∞ this probability will tend to 1 which means that all random walkers
following process (1.1) will eventually be absorbed. The survival function, S(t), is the probability
the random walker is alive at time t and has the following relation S(t) = 1− F (t).

3 Sample Path Simulation
A non-central chi-squared distribution can be expressed as a Poisson compound mixture of central
chi-square distributions (refer Appendix 4) with even degrees of freedom [17]. Using this fact enables
us to formulate a simple algorithm for the simulation of a random walk [5] corresponding to the
SDE (1.1). We make use of items 1 (scaling) and 2 (non-centrality parameter) from the previous
section along with the Markov property† [18] of the random walkers to describe the algorithm for
generating a sample path:

1. For i = 1, 2, . . . , n:

c ← σ2

4∆ti
where ∆ti = ti − ti−1

λ ← xi−1/c

2. Generate N ∼ Poisson (λ/2)

† See also https://almostsure.wordpress.com/2010/07/28/bessel-processes/

3

https://almostsure.wordpress.com/2010/07/28/bessel-processes/


Munasinghe et al.; JAMCS, 33(1): 1-15, 2019; Article no.JAMCS.50085

3. If N = 0 set X = 0 otherwise generate X ∼ χ2
2N

4. Set xi = cX

The algorithm illustrated above was implemented in Rcpp (an implementation of C++ in R) and R
was used in generating plots and data manipulation. The Rcpp implementation is given in Appendix
4. A sample simulation of 100 such generated paths is shown in Figure1.

Fig. 1. Feller Sample Path Simulation with t0 = 0, tn = 20000, ∆ti = 1, σ2 = 1 and
x0 = 1000 (100 paths). Note: Each path is represented by a different colour.

3.1 Examining Survival/Absorption Probabilities
Using our simulations we can explore several properties of Feller Diffusion paths (note: we will
set to = 0 in both our simulation and computations henceforth). We begin by looking at the
absorption probability (2.6) and estimate this via the evolution of the simulated surviving paths.
Our simulations show that the more volatile the walker (i.e. larger values of σ), the lower the
survival rate. They also show that for large times the survival drops. In both instances, the values
are in close agreement with the theoretical values (Table 1 - using 10,000 simulations).

Table 1. Percentage of paths absorbed at origin over time for different values of σ2

with t0 = 0, ∆ti = 1, x0 = 1000. (10,000 paths)

Time (t)

σ2 100 1,000 5,000 10,000 20,000
Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim.

0.1 0.00 0.00 0.00 0.00 1.83 1.70 13.53 13.47 36.79 36.11
1 0.00 0.00 13.53 13.31 67.03 67.08 81.87 82.10 90.48 90.68
10 13.53 13.02 81.87 81.84 96.08 96.12 98.02 98.03 99.00 99.03
100 81.87 82.10 98.02 97.97 99.60 99.61 99.80 99.76 99.90 99.88
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We also observe that the further away from the origin the starting point (larger values of xo) the
better the chance of survival - as per the intuition from equation (2.6). These results are displayed
in (Table 2 - using 10,000 simulations) and show close agreement with the theoretical values:

Table 2. Percentage of paths absorbed at origin over time for different values of x0
with t0 = 0, σ2 = 1, ∆ti = 1. (10,000 paths)

Time (t)

x0
100 1,000 5,000 10,000 20,000

Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim.
10 81.87 82.10 98.02 97.97 99.60 99.61 99.80 99.76 99.90 99.87
100 13.53 13.02 81.87 81.85 96.08 96.11 98.02 98.04 99.00 99.03
1000 0.00 0.00 13.53 13.31 67.03 67.08 81.87 82.10 90.48 90.68
10000 0.00 0.00 0.00 0.00 1.83 1.79 13.53 13.51 36.79 36.07

(a) Feller Sample Path
Simulation with σ2 = 0.1

(b) Feller Sample Path
Simulation with σ2 = 1

(c) Feller Sample Path
Simulation with σ2 = 10

(d) Feller Sample Path
Simulation with σ2 = 100

Fig. 2. Feller Sample Path Simulations with t0 = 0, tn = 20000, ∆ti = 1, x0 = 1000 and
different values of σ2 (100 paths). Note: Each path is represented by a different

colour.

3.2 Martingale Property and Average Position
As equation (1.1) is a martingale (an SDE with no drift term), the expected position of a walker
at time t to be xo (calculation in the Appendix 4). We can examine this via our simulation by
evaluating the average position of several walkers at a particular time via:

x(t) =
1

N

N∑
m=1

xm(t) (3.1)
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The fact that 〈x(t)〉 = xo (given x(0) = xo) might seem paradoxical given that the Feller process is
one where eventually all walkers are absorbed at the origin. This can be understood through the
simulation where the walkers that survive (even though this number will be small) will most likely
be very far away from the origin and thus driving up the average given by equation (3.1). Results
are displayed in Tables 3 and 4. Note the error bounds (confidence intervals) for the Monte Carlo
estimates are in agreement with the theory [5] - these details can be found in Appendix 4.

Table 3. Average x value for varying x0 values with t0 = 0, σ2 = 10, ∆ti = 1. (10,000
paths)

Time (t)
x0 100 1000 5000 10000 20000
10 8.35 6.98 2.74 0.00 0.00
100 100.70 110.73 100.92 127.18 149.70
1000 1000.47 996.56 908.82 960.91 1011.71
10000 9956.68 9958.66 9752.99 9860.61 9775.20

Table 4. Average x value for varying x0 values with t0 = 0, σ2 = 1, ∆ti = 1. (10,000
paths)

Time (t)
x0 100 1000 5000 10000 20000
10 10.07 11.07 10.29 12.68 14.92
100 100.05 99.72 90.96 96.19 99.01
1000 995.67 995.34 975.22 991.77 977.22
10000 9990.73 10000.84 10004.78 10049.72 9953.11

3.3 Hitting Time Distribution
From equation (2.6) we defined the absorption probability F (t) and the corresponding survival
probability S(t), with the relation S(t) = 1− F (t). Given the nature of the Feller random walker,
we can define these probabilities as:

S(t) = Pr [x(t) > 0] (3.2)
F (t) = Pr [x(t) = 0] (3.3)

We define a new random variable, the hitting time or first-passage time, denoted T ∗:

T ∗ = {inf(t) : x(t) = 0}

We can then define the hitting (first passage) time density by [19]:

f(t) = −dS(t)

dt
, (3.4)

where the relation between f(t) and T ∗ is given by

Probability T ∗ ∈ (t, t+ dt) = f(t) dt

This in turn allows us to express the relations (3.2) and (3.3) in terns of relationships between T ∗

and S(t), F (t):

S(t) = Pr [T ∗ > t] (3.5)

F (t) = Pr [T ∗ < t] =

∫ t

0

f(τ) dτ (3.6)
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Let us first turn our attention to a Brownian motion originating at xo described by the SDE
ẋ(t) = σξ(t) with the origin set as an absorbing boundary. In this case, the hitting time density is
given by [19]:

f(t) =
xo√

2σt3/2
exp

[
−x2o
2σ2t

]
, (3.7)

whose integral over t ∈ [0,∞) is 1, indicating that absorption is certain. Paradoxically however the
expected hitting time 〈t〉 = 〈T ∗〉 is infinite due to the large time power law behavior f(t) ∼ t−3/2

[20]. Note the averaging here is with respect to the hitting time density f(t). Setting df
dt

= 0 for
equation (3.7) yields the most likely (typical) hitting time

t∗ =
x2o
3σ2

Now returning to our Feller walker we see an analogous situation to that of the absorbing Brownian
walker. In this case the hitting time density is:

f(t) =
2xo
σ2t2

exp

[
−2xo
σ2t

]
(3.8)

We saw earlier from equation (2.6) that absorption is certain, in terms of the density this is equivalent
to the Brownian case with the integral of the hitting density over t ∈ [0,∞) equal to 1. As with
the Brownian case, due to the large time power law (where now f(t) ∼ t−2) the expected hitting
time is infinite:

〈T ∗〉 = 〈t〉 =

∫ ∞
0

t f(t) dt =
2xo
σ2

∫ ∞
0

e−v

v
dv (3.9)

Similarly setting df
dt

= 0 for equation (3.8) yields the typical hitting time for the Feller walker as

t∗ =
xo
σ2

We use simulations to demonstrate the hitting time distributions for a Feller walker with t0 = 0,
tn = 20000, ∆ti = 1, x0 = 100 and so2 = 1, 10 ( Figure 3 ). A reference line (shown in red)
has been marked on the plots to indicate the theoretical hitting time t∗. It can be seen that this
appears at the peak of the histograms confirming this result. The theoretical distributions indicated
in equation 3.8 are overlaid (in blue) as well to illustrate how closely the simulation agrees with the
theoretical distribution.

(a) Feller Sample Path Simulation with
σ2 = 1

(b) Feller Sample Path Simulation with
σ2 = 10

Fig. 3. Hitting Time Distribution for Feller walkers with t0 = 0, tn = 20000, ∆ti = 1,
x0 = 100 and different values of σ2.
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4 Summary
In this article, we re-examine the derivation of the probability density of the Feller Diffusion
equation. As opposed to the prior approaches [1, 2, 3, 4], we use the Fourier transform on the
Fokker-Planck equation corresponding to the Feller Diffusion and solve the resulting advection-type
equation in Fourier space via the method of characteristics. The solution is easily mapped to the
characteristic function of a scaled version of a non-central chi-squared distribution with zero degrees
of freedom. As the theory of these distributions is well-known [17], it is straight forward to interpret
the results in terms of survival probabilities and further develop the algorithm for developing sample
paths. We carry out such a simulation and i) find the simulated survival probability is very close
to the theoretical value and ii) prove the martingale property by estimating the average position
of the random walkers using Monte Carlo. We also find the hitting time distribution, including
the typical hitting time shows good agreement between the theoretical results and simulation. For
future work we plan to apply the Feller diffusion in the setting of quantitative finance where it has
the potential to be used in the following modelling contexts: i) price dynamics of a risky asset or
interest rate, ii) derivative pricing on risky underlying assets, iii) bond pricing with risky interest
rates, iv) default probability estimation, v) survival analysis including hazard rate modelling and
regression methods.
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APPENDIX

Fourier Transform of Fokker Planck Equation
In this section we look at deriving equation (2.1). We begin by re-writing equation (1.5) as

∂

∂t
P (x, t) =

1

2
σ2x

∂2

∂x2
P (x, t) + σ2 ∂

∂x
P (x, t) (4.1)

Using the Fourier transform we obtain

∂

∂t
P̂ (k, t) =

1

2
σ2

[
i
∂

∂k
(−k2P̂ (k, t))

]
+ ikσ2 ∂

∂k
P̂ (k, t) (4.2)

Note the use of following properties of Fourier transforms in deriving equation (4.2):

dnG(x)

dxn
→ (ik)nĜ(k)

x ·G(x)→ i
d

dk
Ĝ(k)

Expanding the right hand side of equation (4.2) and simplifying yields the result in equation (2.1):

∂

∂t
P̂ (k, t) =

−iσ2k2

2

∂

∂k
P̂ (k, t)

Solution via Method of Characteristics
Let us solve the following PDE for u(z, t) using the method of characteristics:

∂u

∂t
+ iαz2

∂u

∂z
= 0 (4.3)

u(z, to) = ψ(z) (4.4)

The method of characteristics postulates a solution of the form u(z(s), t(s)) satisfying

0 =
du

ds
(4.5)

=
dt

ds

∂u

∂t
+
dz

ds

∂u

∂z
(4.6)

Now equation (4.5) implies that along the characteristic curve (z(s), t(s)), which is parametrized
by s, the solution is constant, i.e.

u(s) = u(0)⇒ u(z(s), t(s)) = u(z(0), t(0)) (4.7)

To be explicit the (z(s), t(s)) and (z(0), t(0)) lie on the same characteristic curve. Matching the
terms in equation (4.3) with equation (4.6) leads to the following system of ordinary differential
equations (ODEs) for the characteristics:

dt

ds
= 1 t(s = 0) = to t(s) = t (4.8)

dz

ds
= −iαz2 z(s = 0) = zo z(s) = z (4.9)

10
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Equation (4.8) is solved by integrating as follows:∫ t

to

dt′ =

∫ s

0

ds′ ⇒ s = t− to (4.10)

Equation (4.9) is solved by integrating as follows:∫ z

zo

dη

η2
= −iα

∫ s

0

ds′ ⇒ zo =
z

1 + iαzs
=

z

1 + iαz(t− to)
(4.11)

Using equation (4.7) along with equations (4.10) and (4.11) enables us to obtain the solution

u(z, t) = u(zo, to) = ψ(zo) = ψ

(
z

1 + iαz(t− to)

)
(4.12)

We see that (4.12) satisfies the initial condition u(z, to) = ψ(z). For the particular choice of initial
condition (as in our problem):

ψ(z) = e−izxo ⇒ u(z, t) = exp

[
−izxo

1 + iαz(t− to)

]
(4.13)

We make the identifications to map back to our original problem:

z → k

α → σ2

2

u(z, t) → P̂ (k, t)

ψ(z) → exp[−ikxo] ,

It is then straight forward to use (4.13)to arrive at the final answer given by equation (2.4):

P̂ (k, t) = exp

[
−ikxo

1 + ikσ2

2
(t− to)

]

Mean and Variance of Feller Diffusion Process
We may use the cumulant generating functionH(k, t) to derive the cumulants of the Feller Diffusion,
where

H(k, t) = lnϕ(k, t) = ln P̂ (−k, t) = ln〈eikx〉.

In particular the mean is given by

〈 x(t)| x(0) = xo 〉 = −i ∂
∂k
H(k, t)

∣∣∣∣
k=0

= −i ∂
∂k

[
−ikxo

1 + ikσ2

2
(t− to)

] ∣∣∣∣∣
k=0

= −i · ixo ·
[
1 +

ikσ2

2
(t− to)

]−2 ∣∣∣∣
k=0

= xo (4.14)
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This matches our intuition as the random walk described by equation (1.1) is drift-less and thus a
martingale. The variance of x(t) is given by

〈 (x− 〈x〉)2 | x(0) = xo 〉 = (−i)2 ∂
2

∂k2
H(k, t)

∣∣∣∣
k=0

= −i ∂
∂k

xo ·
[
1 +

ikσ2

2
(t− to)

]−2
∣∣∣∣∣
k=0

= −ixo · iσ2(t− to) ·
[
1 +

ikσ2

2
(t− to)

]−3
∣∣∣∣∣
k=0

= σ2xo · (t− to) (4.15)

We use this value to obtain an error-bound on the Monte Carlo estimate of the average position,
x(t) of a Feller random walker at time t given by equation(3.1). By Monte Carlo theory [5] x(t) is
distributed (approximately) as a normal with a mean xo (i.e. true value) and variance σ2xot/N .
This enables us to obtain a confidence interval for xo [5]:

x(t)± Φ−1(1− α/2) ·
√
σ2xot

N

Here Φ−1 is the inverse cumulative normal distribution and α is the confidence level. For the 95
percent confidence interval, we set α = 0.05 and Φ−1(0.975) = 1.96.

To demonstrate this, we include here the results of the Monte Carlo simulations given in Section
3.2 with their 95% confidence intervals in Tables 5 and 6. It is noted that all the simulated results
indicate that 〈x(t)|x(0) = xo〉 = xo within the error bounds.

Table 5. 95% Confidence Intervals of x values given in Table 3

x0 Time (t) x
95% Confidence Interval

Lower Bound Upper Bound

10

100 8.35 6.39 10.31
1000 6.98 0.78 13.18
5000 2.74 -11.12 16.60
10000 0.00 -19.60 19.60
20000 0.00 -27.72 27.72

100

100 100.70 94.50 106.90
1000 110.73 91.13 130.33
5000 100.92 57.09 144.75
10000 127.18 65.20 189.16
20000 149.70 62.05 237.35

1000

100 1000.47 980.87 1020.07
1000 996.56 934.58 1058.54
5000 908.82 770.23 1047.41
10000 960.91 764.91 1156.91
20000 1011.71 734.53 1288.89

10000

100 9956.68 9894.70 10018.66
1000 9958.66 9762.66 10154.66
5000 9752.99 9314.73 10191.25
10000 9860.61 9240.81 10480.41
20000 9775.20 8898.68 10651.72

12
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Table 6. 95% Confidence Intervals of x values given in Table 4

x0 Time (t) x
95% Confidence Interval

Lower Bound Upper Bound

10

100 10.07 8.11 12.03
1000 11.07 4.87 17.27
5000 10.29 -3.57 24.15
10000 12.68 -6.92 32.28
20000 14.92 -12.80 42.64

100

100 100.05 93.85 106.25
1000 99.72 80.12 119.32
5000 90.96 47.13 134.79
10000 96.19 34.21 158.17
20000 99.01 11.36 186.66

1000

100 995.67 976.07 1015.27
1000 995.34 933.36 1057.32
5000 975.22 836.63 1113.81
10000 991.77 795.77 1187.77
20000 977.22 700.04 1254.40

10000

100 9990.73 9928.75 10052.71
1000 10000.84 9804.84 10196.84
5000 10004.78 9566.52 10443.04
10000 10049.72 9429.92 10669.52
20000 9953.11 9076.59 10829.63

Zero Degrees of Freedom Non-central Chi-Squared
Distribution
A non-central chi-squared distribution with zero degrees of freedom and non-centrality parameter
λ [17] is given by the density function:

g(x;λ) = e−λ/2
∞∑
j=0

(λ/2)j

j!
q(x; 2j) (4.16)

Here q(x; ν) is the density function of a central chi-squared distribution with ν degrees of freedom.

q(x; ν) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2 (4.17)

Using the convention q(x; 0) = δ(x) we may re-write equation (4.16) as

g(x;λ) = e−λ/2
[
δ(x) +

∞∑
j=1

(λ/2)j

j!
q(x; 2j)

]
(4.18)

Equations (4.16) and (4.18) describe a compound Poisson mixture of central chi-square distributions
with even degrees of freedom [17]. The corresponding characteristic function ϕf (k;λ) can be derived
from (4.18) very easily:

ϕg(k;λ) = e−λ/2
[

1 +

∞∑
j=1

(λ/2)j

j!

∫ ∞
0

q(x; 2j)eikxdx

]

= e−λ/2
[

1 +

∞∑
j=1

(λ/2)j

j!
(1− 2ik)−j

]

= exp

[
ikλ

1− 2ik

]
(4.19)
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We have used the fact that the characteristic function of q(x; 2j) is (1 − 2ik)−j in the derivation.
In addition, we note that we may write the density function in the alternative form [4, 17]

g(x;λ) = e−λ/2δ(x) +
1

2

√
λ

x
e−(x+λ)/2I1

(√
λx
)

(4.20)

Here I1(z) denotes the modified Bessel function of order 1 which is given by

I1(z) =

∞∑
n=0

1

n!(n+ 1)!

(z
2

)2n+1

=

∞∑
n=1

1

n!(n− 1)!

(z
2

)2n−1

(4.21)

Substituting equations (4.17) and (4.21) in equation (4.18) yields

g(x;λ) = e−λ/2
[
δ(x) +

∞∑
j=1

(λ/2)j

j!

xj−1

2jΓ(j)
e−x/2

]

= e−λ/2δ(x) +
e−(x+λ)/2

x

∞∑
j=1

(λx/4)j

j!(j − 1)!

= e−λ/2δ(x) +
e−(x+λ)/2

x

√
λx

2
I1
(√

λx
)

(4.22)

Re-arranging the last line leads to equation (4.20). The distribution has a straight forward interpre-
tation where the the probability that random variable takes the value 0 is e−λ/2 and the probability
that the random variable lies between a( 6= 0) and b is given by the integral of the second term
in (4.20) over the corresponding limits. If a = 0 we would include the δ function term in the
integration. Finally, note for the Feller Diffusion process the density function (with to set to 0) is
given by [4]

P (x, t|xo, 0) = e−2xo/σ
2t · δ(x) +

2

σ2t

√
xo
x
· e−2(x+xo)/σ

2t · I1
(

4
√
xxo

σ2t

)
(4.23)

Rcpp Implementation of Sample Path Simulation
The function CFellerPaths implemented below outputs a list containing time and the set of paths
generated. The function allows to specify an initial seed, the number of paths required, a starting
and ending time, ∆ti, the variance and the starting point.

#include<Rcpp . h>
#include<math . h>
#include<random>

// [ [ Rcpp : : p l u g i n s ( cpp11 ) ] ]
using namespace Rcpp ;

// [ [ Rcpp : : expor t ] ]
L i s t CFel lerPaths ( int seed , int num, int t0 , int tn , double dt ,

double var , double x0 ){
int n = c e i l ( ( ( double ( tn − t0 ) )/ dt ) + 1 . 0 ) ;

NumericMatrix Paths (n , num) ;
stat ic std : : mt19937 gen ;

NumericVector t (n ) ;

14



Munasinghe et al.; JAMCS, 33(1): 1-15, 2019; Article no.JAMCS.50085

t [ 0 ] = t0 ;

for ( int j =0; j<num; j++){
NumericVector x (n ) ;
x [ 0 ] = x0 ;

gen . seed ( seed ) ;
seed += 1 ;

for ( int i =1; i<n ; i++){
double c = var / (4 . 0∗ dt ) ;
double lambda = f loat ( x [ i −1])/ c ;

std : : po i s son_d i s t r ibut i on<> pd ( ( lambda / 2 . 0 ) ) ;
double N = pd( gen ) ;
i f (N==0){

x [ i ] = 0 . 0 ;
} else {

std : : ch i_squared_distr ibut ion<> cd ( (
2∗N) ) ;

x [ i ] = c∗cd ( gen ) ;
}

}

Paths (_, j ) = x ;
}

for ( int i =1; i<n ; i++){
t [ i ] = t [ i −1] + dt ;

}

return ( L i s t : : c r e a t e (Named( " t ")=t ,
Named( "paths ")=Paths ) ) ;

}
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