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Abstract

The curvatures €, ,3 of a factorable hypersurface are introduced in the four-dimensional Euclidean
space. It is also given some relations on €; of the factorable hypersurface.

Keywords: Four-space; factorable hypersurface, fourth fundamental form.

1 Introduction

Surfaces and hypersurfaces have been studied by mathematicians for centuries. It can be seen some papers
about factorable surfaces and factorable hypersurfaces in the literature such as [1-25].

A factorable hypersurface in E* can be parametrized by

x(u,v,w) = (u, v, w, uvw), 1
where u,v,w € c R.
In this paper, the fourth fundamental form of the factorable hypersurface is obtained in the four-dimensional

Euclidean space E*. Some notions of four-dimensional Euclidean geometry are shown. Moreover, the
curvatures €;_, , 3 of the factorable hypersurface are obtained.

*Corresponding author: E-mail: eguler@bartin.edu.tr;
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2 Preliminaries

Characteristic polynomial of the shape operator S is obtained by as follows

n

Ps(1) =0 =det(S—AI) = Z(—l)" s Ak, 2.1)

k=0

where I,, denotes the identity matrix of order n in E**2, Then, curvature formulas are defined by as follows

(ei=s

where (g) €y = s = 1 by definition. Therefore, k-th fundamental form of hypersurface M™ is given by

I(S*71(X),Y) = (s*71(X),Y).

Hence

> i (a0, =0 2.2)
i=0

is hold.
A vector (a, b, ¢, d) with its transpose are considered as identify in this work.

Let M = M(u, v, w) be an isometric immersion of a hypersurface M3 in E*. The inner product of vectors
X = (xq1,%5,%x3,%,) and ¥ = (y1, V3, ¥3,¥s) in E* is given by as follows:

4
(x,9) = Z XiYi-
i=1

Vector product X X ¥ X Z of ¥ = (xq, X3, %3, %4), ¥ = V1, V2, V3, Ya), Z = (24,23, Z3,Z4) in E* is defined by
as follows:

€162€38,
X1X2X3X4
V1Y2Y3Y4
21222374

The Gauss map of a hypersurface M is given by

M, XM, X M,,
e=—————-/
M, x M, x M, ||

where M,, = dM/du. For a hypersurface M in E*, following fundamental form matrices are holds:

E F A
I= (F G B),
A B C
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L M P
[I=det{M N T),
P T V
0
R

XY
I = (Y Z >
O R S

where the coefficients are given by
E=My,M,), F=M,M,), ¢=(M,M,), A=(M,,M,), B=(M,M,), C=(M,,M,)
L=(Myye), M=(My,e), N=(Mye) P=(Mye) T=(Mye) V=(My,e),
X=Aeyey), Y=A(eye,), Z=(e,e,), O0={(eyeyn), R={(e,ey) S={ ey ey
3 Curvatures

Next, the curvatures of a hypersurface M(u, v, w) will be obtained in E*. Using characteristic polynomial
Pg(1) = aA® + bA% + cA + d = 0, the curvature formulas are computed: €, = 1 (by definition),

Ne - b By ¢ B, _ d
(1) ¢ = Ta (2) ¢, T a (3) ¢; = Ta
Then, the following curvature formulas are hold:
3.1 Theorem

Any hypersurface M3 in E* has following curvature formulas, €, = 1 (by definition),

(EN + GL — 2FM)C + (EG — F?)V — LB?> — NA%? — 2(APG — BPF — ATF + BTE — ABM)
1= )

3[(EG — F2)C — EBZ + 2FAB — GA?]

3.1)
o = (EN +GL—2FM)V + (LN — M?)C — ET? — GP? — 2(APN — BPM — ATM + BTL — PTF)
2= 3[(EG — F2)C — EBZ + 2FAB — GA?] '
(3.2)
(LN — M?)V — LT? 4+ 2MPT — NP?
G, = (3.3)

~ (EG — F?)C — EB? 4+ 2FAB — GA?~
Proof. Solving det(S — Al3) = 0 with some calculations, the coefficients of polynomial Pg(1) are found.
3.2 Theorem
For any hypersurface M® in E*, curvatures are related by following formula

ColV —3C, 11T + 3C,I1 — €31 = 0. (34)
4 Curvatures of factorable hypersurface

The curvatures of factorable hypersurface (1.1) will be computed in this section.
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With the first differentials of (1.1) depends on u, v, w, the Gauss map of (1.1) is given by

vw
1
ww (4.1)

¢~ ez \ uv
-1

detl = u?v? + u?w? + v?w? + 1. The first and the second fundamental form matrices of (1.1) are found

by as follows, respectively,

v2w? +1 uvw? uviw
I={ www? ww?+1  vow )
uviw u?vw u?v? +1

0 w v
(detD'Z  (det)1/?

w u
=\~ (qern2 0 ~ (Aot
(detD?/ (detD?/

v u 0

" (detD¥2  (detD)/2

Computing matrix /=1 - I1, shape operator matrix of the factorable hypersurface (1.1) can be seen as follows

uvw(v2+w?) wuw? +1) v(u?v? +1)
(detD)3/2 T (detD32z  (detD)?/2
S w@iw?2+1) uwww@u?+w?) _u(u2v2 +1)
(detD)3/2 (detD)3/2 (detD)3/2
v(viw? +1) u@?w?+1) uvw@?+v?)
T (detD32 " (detD)3/2 (detD3/2
4.1 Theorem

Factorable hypersurface (1.1) in E* has the following curvature formulas, €, = 1 (by definition),

G 2uvw (u? + v? + w?)
1= 3(u2v2+u2W2+ 2w+ 1)3/2’

3uvw? — (u? + v? + w?)
27 3(uw? + uw? + vw? + 1)?

G 2uvw
3T U+ uw?+ viw? + 1)5/2

Proof. Computing (3.1), (3.2), and (3.3) of (1.1), the curvatures is obtained.

4.2 Corollary

Factorable hypersurface (1.1) in E* has the following relations

(©)’¢, _ Bp’—a9)q®

(©)2 9
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Where
p=uvw, q=u?+v?+w?
Proof. Using Theorem 4.1, it is seen clearly.
4.3 Corollary
The factorable hypersurface (1.1) depends on €, in E* can be written as follows

3G, (det ]3/2>

x(u,v,w) = (u, v, W, q

4.4 Corollary

The factorable hypersurface (1.1) depends on €, in E* can be written as follows

36, (det)? + q\"*
x(u,v,w)=<u,v,w,i<$) .

4.5 Corollary

The factorable hypersurface (1.1) depends on G5 in E* can be written as follows

Gg(detls/z)

x(u,v,w) = (u, v,wW,— 2

S Conclusion
Factorable hyper-surfaces have been studied by lots of authors for a long time. Results of the factorable

hypersurface (1.1) are expanded by using its curvatures in [E*. In addition, factorable hypersurface (1.1) are
given by its curvatures €, €,, and €5 of E* in this work.
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