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ABSTRACT 
 

High-resolution aeromagnetic data covering an area of 24, 200 km2 in north central Nigeria has 
been acquired and analyzed with the aim of carrying out trend analysis, edge detection (structural 
delineation) and depth to magnetic source estimation using reduce to the pole (RTP), horizontal 
gradient magnitude (HGM), center for exploration targeting plug-in (CET), 3D Euler deconvolution 
and source parameter imaging (SPI) techniques. Trend analysis was applied to the RTP data to 
delineate structures that have dissected the area. The 3D Euler deconvolution and HGM were 
correlated by plotting the estimated Euler solutions for a structural index of one (SI=1) on HGM 
map and the resulting map produced have shown that both methods can contribute in the 
interpretation of the general structural framework of the study area. The structural delineation 
based on HGM and CET maps showed that two predominant trends (ENE-WSW) and (WNW-ENE) 
have affected the area. The trend/depth/contacts of these faults were classified into four groups: 
Faults <150 m, 150 m - 300 m, 300m - 450 m which are the most predominant fault system based 
on Euler solutions with a structural index of one (SI=1) and those deeper than 450 m while the 
result of source parameter imaging (SPI) revealed a depth to source varying from 58 m specifically 
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for areas with shallow depth to the magnetic source to those from deeper source occurring at 
588.153m depth especially the south-central portion and the south-eastern portion of the study 
area. 
 

 
Keywords: RTP; HGM; CET; deconvolution; SPI. 
 
1. INTRODUCTION  
 
Magnetic surveying has broad range of 
applications, from small scale engineering or 
archaeological surveys to detect buried metallic 
objects, to large-scale surveys carried out to 
investigate the regional geological structure. 
Common causes of magnetic anomalies include 
dykes, faulted, folded or truncated sills and lava 
flows, massive basic intrusions, metamorphic 
basement rocks and magnetite ore bodies [1]. 
The magnetic method has been widely used in 
mineral exploration for decades, recent 
improvements in magnetic data acquisition, 
processing and presentation have increased the 
importance of magnetic surveys; particularly the 
high-resolution aeromagnetic surveys[2].	In High-
resolution aeromagnetic data (HRAD), the data 
are generally collected as close to the ground as 
allowed by aircraft safety and regulations, giving 
nominal terrain clearances of about 80-150 m [3]. 
This great advance to aeromagnetic 
interpretation has been a change in the survey 
design that better map short wavelength, low-
amplitude magnetic anomalies[4]and is a time 
and cost-effective method of mapping the Earth’s 
magnetic field. Magnetic anomalies in the Earth 
magnetic field are caused by magnetic minerals 
in the rocks, and maps and images of these 
anomalies can be interpreted in terms of 
geology. The modern aeromagnetic survey is 
capable of mapping valuable geologic structures 
on a regional scale including concealed terrains 
due to the sophistication of modern technology to 
provide high-quality data [5 − 7] . Airborne 
geophysical data can be enhanced by a range of 
linear and non-linear filtering algorithms. A range 
of imaging routines can be specified to visually 
enhance the effects of selected geologic sources 
using mathematical enhancement 
techniques[8].	The interpretation of aeromagnetic 
anomaly data for improved sources depth 
estimates and locations of structural features 
such as faults, folds and contacts requires the 
use of relevant standard techniques and good 
geological interpretation. Some of these standard 
techniques include: A transformation operation 
launched by [9]  and developed by [10]	 called 
Pole Reduction (RTP) that enables the 
repositioning of magnetic anomalies above the 

causative source, horizontal gradient magnitude 
(HGM) technique that can be used to map linear 
features [11 − 13] , such as fault zones and/or 
dykes from the potential field data compared with 
the application of center for exploration targeting 
(CET) for automatic structural delineation which 
according to [14, 15], is a suite of algorithms that 
provide enhancement, lineament detection and 
Structural complexity analysis functionalities for 
potential field data with Euler deconvolution [16], 
for a boarder, structures, depth and geometry as 
well as source parameter imaging developed by 
[17 − 19]	 for depth to magnetic source 
determination as such, the present research is 
aimed at the delineation of structural framework 
and depth to the magnetic source within the 
study area and we applied the above-mentioned 
transformation and filtering techniques to 
delineate these  structures and depth to the 
magnetic source within part of north-central 
Nigeria bearing in mind, the association of 
structures with mineralization. Several articles 
have been published based on interpretation of 
aeromagnetic data within Nigerian basement 
complex and adjoining sedimentary basins[20 −
25]  which some of the techniques mentioned 
above were used. 
 

1.1 Location of the Study Area 
 

The research area is a rectangular block zone 
located in the north-central portion of Nigeria, 
particularly in the northern Nigerian Basement 
Complex (Fig. 1).  It is bordered by latitudes 08
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00
1
 E. The research area also forms part of 

the Nigerian schist belt and the younger granite 
province of Northern Nigeria and extends from 
the south of Kaduna City to the south of Kohawa 
in the west and from the south of Abaji just 
around the south-western portion of Robuchi to 
the south-eastern portion of Onda. It falls 
within three states in Nigeria and the Federal 
Capital Territory (Kaduna, Niger, Nasarawa and 
FCT) (Fig. 2). 
 

1.2 Geology and Tectonic Setting of the 
Study Area 

 
The study area is exclusively Basement Complex 
and the Basement Complex of Nigeria comprises 
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Fig. 1. Generalized geologic map of Nigeria 
 

 
 

Fig. 2. Location map of the study area 
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Fig. 3. Generalized geological map of Nigeria within the framework of the geology of West- 
Africa (Modified from[33]) 

 
of four major petro-lithological units, namely: 
Migmatite – Gneiss Complex (MGC), Schist Belt 
(Metasedimentary and Metavolcanic rocks), 
Older Granites (Pan African granitoids) and 
Undeformed Acid and Basic Dykes 
[26, 27].	 According to [28 − 32],  the Nigerian 
basement complex, which forms part of the Pan-
African mobile belt, is situated between the West 
African craton; the Congo craton and south of 
Tuareg shield (Fig. 3) and was deformed by 
different pre-Cambrian thermo tectonic events, 
which were accompanied by progressive regional 
metamorphism. Each of the thermo tectonic 
events produced characteristic imprints on the 
basement rocks. However, the Pan-African event 
was so pervasive that it wipes out most of the 
structures of the earlier events, leaving only their 
traces. 
 
Also, as reported by[34, 30, 31] , the structures 
produced by this widespread event trend 
commonly N-S to NE-SW whereas those of the 
other earlier events, including the early part of 
the widespread Pan-African event trend ENE-
WSW, E-W and NW-SE. The thermo tectonic 
events were also accompanied by the intrusion 

of syn-to late-tectonic granites and granodiorites. 
Common varieties of the granites include 
porphyritic biotite-and biotite-hornblende 
granites, as well as non-porphyritic types, 
commonly non-foliated [28] .These Pan-African 
granites were termed “Older granites” to 
distinguish them from the Jurassic (Younger) 
granites with which they are closely associated in 
the basement of Northern Nigeria [35] . Recent 
study of Nigerian basement complex by [36] 
based on analyses of the Nigeria metallogenic 
belts, have shown that the stress pattern of the 
Nigerian landmass has changed appreciably 
from N-S and NNE-SSW trend to NE-SW and 
ENE-WSW trend over a period of time from Pan 
African to Early Cenozoic. These changes have 
led to the growth of intraplate tensional stresses 
with the resultant development of intraplate 
tensional features such as the Sn-Ta pegmatite 
belt, the Sn-Nb Younger Granite belt and the Pb-
Zn Benue Trough in contrast to the N-S 
compressional plate boundary type related to the 
continent-continent collision between two entities 
(the West African craton and the Trans-Saharan 
mobile belt). The predominant rock type 
within the research area is Migmatite which 
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Fig. 4. Geology of the study area 
 
almost covered the entire area with an isolated 
occurrence of coarse porphyrite Biotite 
and Hornblend granite, undifferentiated granite, 
Migmatite and granite gneiss, Biotite Granite, 
medium to Coarse grained Biotite Granite, 
Granite and Granite porphyry (Fig. 4). 
 
2. MATERIALS AND METHODS 
 
The aeromagnetic data used for this study was 
acquired from the Nigerian Geological Survey 
Agency (NGSA) Abuja and consists of sheets 
(144 Kakuri, 145 Kajuru, 165 Bishini, 166 Kachia, 
186 Abuja, 187 Gitata, 207 Kuje and 208 Keffi). 
Magnetic Data Recording Interval of 0.1 seconds 
or less (˷7m), Sensor Mean Terrain Clearance of 
80 meter, Flight Line Spacing, (500) meters , Tie 
Line Spacing 5000 meters , Flight Line Trend 
135 degrees and Tie Line Trend 45 degrees . 
Also used is shuttle radar topography mission 
(SRTM) digital elevation model (DEM) covering 
the study area was taken from united state 
geologic survey (USGS) web site. 
 
We used software’s to conduct our research, 
Oasis Montaj version 8.3, was used in gridding 
the magnetic data using the minimum curvature. 
The total magnetic intensity (TMI) data (Fig. 5a) 
was reduced to magnetic pole (IGRF of 2005) 
with magnetic inclination of -4.68° and 

declination of - 2.01° of the center point of the 
study area (Fig. 5b). This was done to enables 
the repositioning of magnetic anomalies above 
their causative source [37 − 39, 8, 9].  The RTP 
grid data was upward continued to height of 
30km grid which represents the regional field 
[40, 41].  and this regional grid was subtracted 
from the RTP grid to get the residual grid 
displayed as a map (Fig. 6a). 
 
According to [11],	horizontal gradient magnitude 
(HGM) or total horizontal derivatives can provide 
higher resolution and higher precision for wider 
line spacing. It is essentially important to use 
while attempting to map linear features such as 
fault zones and/or dykes from potential field data. 
The horizontal gradient magnitude of the 
potential field anomaly was calculated using the 
Pythagorean sum of the horizontal gradients. For 
the magnetic field, the Horizontal Gradient 
Magnitude, (HGM) is calculated as: 
  

HGM (x, y) = ��
��

��
�
�

+	�
��

��
�
�

         (1) 

 

where 
��

��
 and 

��

��
 are the horizontal derivatives of 

the magnetic field in the x and y directions, 
respectively. This function peaks over 
contacts/Joints on the assumptions that the 
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regional magnetic field and magnetic source are 
vertical among other assumptions. The ridges or 
maxima of the horizontal derivatives are 
recognized generally as being good locators of 
shallow, vertical body edges. This enhancement 
is complementary to first vertical derivative 
enhancements. According to [12],	the horizontal 
derivative method will produce apparent contacts 
that are linear and very continuous and was 
applied to the aeromagnetic data where major 
structures were manually mapped out in (Fig. 6b) 
and displayed in Fig. 7a. 
 
Fig. 7a represent manually delineated structures 
from HGM in arc Map enivironment and to 
produce Fig. 7b, geometry was assigned to the 
structures (X and Y coordinate of line start and 
line end). The file was then imported into 
rockworks version 16 environments that finally 
created the rose diagram (Fig. 7b) with 
lineaments (structure) density map (Fig. 7c) 
produced in arc map environment and exported 
as jpeg file. 
 

The center for exploration targeting (CET) 
according to[15, 14], is a suite of algorithms that 
provide enhancement, lineament detection and 
Structural complexity analysis functionalities for 
potential field data. The technique automatically 
delineates lineaments and can also identifies 
promising areas of ore deposits within an area of 
study using total magnetic intensity (TMI) data 
through outlining regions of convergence and 
structural element divergence using several 
statistical steps including textural analysis, 
lineament detection, and vectorisation (Figs. 8a 
and 8b).  The vectorised structural map produced 
using Montaj was exported and saved as Esri 
Shapefile (.shp) where it was imported into arc 
map version 10.5 and geometry was assigned to 
the structures (X and Y coordinate of line start 
and line end). The file was then imported into 
rockworks version 16 environment that finally 
created the rose diagram (Fig. 9a). Lineaments 
(structure) density map (Fig. 9b) was produced in 
arc map environment and exported as jpeg         
file. 
 

 
 

Fig. 5. a. TMI map and b. RTP maps 
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Fig. 6. a. RMI map and b. Horizontal Gradient Magnitude map 
 

 
 

Fig. 7. a. Structural map from HGM b. Rose diagram and c. structual density map 
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Fig. 8. a. Standard deviation and b.  Vectorised structural map 
 

 
 

Fig. 9. a. Rose diagram and b. lineament density map 
 

The standard Euler Deconvolution method was 
applied to the RTP grid data of the study area, 
using structure index 0, 1, 2 and 3 to delineate 
the depth and location of the basement rock 
contact and/or faults with dykes (N= 0 for 
contacts, 1 for sill / dyke / fault, 2 for pipe / 
horizontal bodies, and 3 for spherical bodies). 
The obtained Euler solution maps Fig. 10 (a and 
b) and Fig. 11 (a and b). 

The 3D Euler deconvolution has proven to be a 
robust interpretation tool in the interpretation of 
magnetic data because it requires little prior 
information on the geometry of magnetic 
sources. Another advantage of this technique is 
that it requires no knowledge of the vector 
magnetization [42, 16],	it can therefore be applied 
to regions where the causative magnetic source 
is hidden and where the geology of the location 
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is not well known. Largely, this technique has 
been used extensively to outline the edges and 
shapes of sources from potential field image 
map[43 − 46] . 3D Euler deconvolution extracts 
data from grids using the homogeneity 
relationship shown by ([41]. This relationship can 
be written in the following form: 
 

(� − ��)
��

��
+ (� − ��)

��

��
+ (� − ��)

��

��
= �(� − �)        (2) 

 

Where (��, ��, ��) is the position of a              
magnetic source whose total field T is              
detected at (x, y, z).  B is the regional                  
field value, and the degree of homogeneity 
interpreted as the structural index (SI)                
which is a measure of the rate of change              
at field distance is represented by N,                  
and this structural index was chosen                   
based on prior knowledge of the source 
geometry. To correlate Euler deconvolution and 
HGM, the Euler solution for structural index of 
one (SI=1) was plotted on the HGM map in Oasis 
Montaj environment (Fig. 12a). 
 
The source parameter imaging (Fig. 12b) has 
been employed to determine the depth to the 

magnetic source within the study area. [17 − 19] 
developed the source parameter imaging (SPI) 
technique, based on the complex analytic signal, 
which computes source parameters from gridded 
magnetic data. The technique is sometimes 
referred to as the local wavenumber method. The 
local wavenumber has maxima located over 
isolated contacts, and depths can be estimated 
without assumptions about the thickness of the 
source bodies[47]. Based on[17], the basics are 
that for vertical contacts, the peaks of the local 
wavenumber define the inverse of depth. The 
Source Parameter Imaging (SPI) method 
calculates source parameters from gridded 
magnetic data. SPI is a technique based on the 
extension of complex AS to estimate magnetic 
depths; it is also known as local wavenumber. 
The original SPI method works for two models: a 
2-D sloping contact or a 2-D dipping thin-sheet. 
For the magnetic field ƒ, the local wavenumber is 
given by equation 6: 
 

� = 	
	��	�

����

��

��
�
��	�

���
��

��

�
��

��
�
�
��

��

��
�
�                                      (3) 

 

 
 

Fig. 10. a. Euler deconvolution SI = 0 for contacts and b. Euler deconvolution SI = 1 for 
sill/dyke/fault 
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Fig. 11. a. Euler deconvolution, SI=2 for pipes and horizontal bodies’ b. Euler 
deconvolution, SI=3 for spherical bodies 

 

 
 

Fig. 12. a. HGM Map with Euler Solution (SI = 1) b. Depth to Magnetic Source Map (SPI) 
 

For the dipping contact, the maxima of k are 
located directly over the isolated                      
contact edges and are independent of the 
magnetic inclination, declination, dip,                  

strike and any remnant magnetization.                     
The depth is estimated at the source                      
edge from the reciprocal of the local 
wavenumber i.e 
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����ℎ��� = 	
�

����
                                    (4) 

 

Where ����  is the peak value of the local 
wavenumber K over the step source [17].	

	

3. RESULTS AND DISCUSSION 
 

3.1 Qualitative Interpretation 
 

According to[48], the qualitative interpretation of 
aeromagnetic data directly illustrates geological 
information by looking at an aeromagnetic map 
without any calculations. A visual inspection of 
magnetic maps can be fruitful for preliminary 
interpretation [49] . Visual studies of total 
aeromagnetic intensity (TMI) and total magnetic 
intensity reduced to the pole (RTP) maps (Fig. 5a 
and 5b) and the residual aeromagnetic intensity 
map (Fig. 6a) of the central part of Nigeria 
revealed variations in the magnetic field intensity 
throughout the area and such variation is a 
function of the rock types, differences in the 
sizes, depths, and magnetic susceptibilities of 
the underlying rocks. The TMI map (Fig. 5a) and 
the RTP map (Fig. 5b) emphasizes the magnetic 
intensities and the wavelength/frequencies of the 
anomalies within the area that is comprised of 
both regional and local sources. Most of the 
anomalies trend in the NE–SW direction, while 
others trend in the E–W especially within the 
central portion of the map to the west and NW–
SE directions. 
 
The alternating occurrence of magnetic high and 
lows within TMI and RTP maps could be 
attributed to faults/highly fractured nature of the 
area as oxidation in fractured zones during 
weathering processes commonly leads to the 
destruction of magnetite which often allows such 
zones to be picked out on anomaly maps as 
narrow zones with markedly less magnetic 
variation than in the surrounding rocks	[50]. Also, 
the effect of metasomatic alteration of magnetite 
and /or hydrous Fe-oxide developed in fractures 
can lead to a decrease in the magnetic 
susceptibility of the host rocks [51].	

	

Magnetic intensity values vary from 32949.581 
nT minimum to 33117.780 nT maximum on the 
TMI map, magnetic high is observed around the 
southern portion of the map and within the 
central portion. The positions of the magnetic 
lows and highs have now changed as areas 
showing magnetic low on the TMI map are now 
showing high on the RTP map (Fig. 6b). Also, 
RTP map has magnetic intensities that vary from 
32967.187 nT minimum to 33177.130 nT 

maximum. Within the central portion of the RTP 
map to the western end, the magnetic highs 
within these areas could be attributed to basic 
magmatic intrusions. 
 

The residual magnetic intensity map (Fig. 7a) 
has magnetic intensity values ranging from -
51.085 nT low to 132.380 nT high. The short-
wavelength (high-frequency signatures) occurs 
within the central portion of the map and span 
through the end of the map in the west. The long-
wavelength (low-frequency signatures) is 
predominant within the south-west, south-east 
and northern part of the map. 
 

3.2 Quantitative Interpretation 
 

3.2.1 Structural lineament trends  
 

The horizontal gradient magnitude (HGM) map 
(Fig. 6b) has produced maximum ridges over the 
edges of contacts or faults within the study area. 
The horizontal gradient magnitude map peaks 
locations and directions of maxima within the 
study area that is mapped out manually using 
black lines as displayed in Fig. 7a. Inspection of 
HGM structural map (Fig. 7a) reveals structures 
that were statistically analysed (Fig. 7b) to be 
trending majorly in ENE-WNW and WNW-ENE 
directions with minor NE-SW, NNE-SSW and 
NW-SE trends. While lineament density analysis 
map (Fig. 7c) of the manual structures delineated 
using the HGM showed the central portion of the 
map to be very dense with structures which could 
be prospective for mineralization. 
 
The center for exploration targeting, starting with 
the standard deviation map of the study area 
(Fig. 8a) shows the area in (blue coloration) 
which indicated very little variation in the 
magnetic intensity data of the study area. Areas 
(Red to Pinkish coloration) with moderate to high 
variation in magnetic intensity within the study 
area are concentrated within the central portion 
of the map and span toward the west to the end 
of the map are attributed to shallow or exposed 
magnetic source. Also, the vectorised structural 
map (Fig. 8b) reveals the central portion of the 
study area to be highly deformed and dissected 
by many tectonic trends. Fig. 9a depict the 
lineaments that were automatically extracted to 
be trending also just like the manually extracted 
lineament rose diagram (Fig. 7b) in ENE-WSW, 
WNW-ESE, NE-SW, NW-SE, NNE-SSW and 
NNW-SSE directions. Statistical trend analysis of 
the structures using the rose diagram (Fig. 9a) 
showed that the largest petal which is 40.60 % of 
total delineated lineaments; represent lineaments 
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trending in the East-North-East to West-South-
West (ENE-WSW) direction.  Fig. 9a also 
indicates that out of delineated lineaments 
plotted, 17.80% represented petal striking in the 
northeast-southwest (NE-SW) direction with 
21.30% of the structures striking West-South-
West to East-North-East (WNW-ESE) and 
another 6.90 % trending in the northwest-
southeast (NW-SE) direction . Also, the North-
North-East to South-South-West (NNE-SSW) 
trending structures accounted for 7.5 % while 
North-North-West to South-South-East (NNW-
SSE) trending structures accounted for 5.90 % of 
the total structures within the study area. 
Dominant structural trend base on the analysis is 
the East-North-East to West-South-West (ENE-
WSW) followed by the structures trending in 
West-South-West to East-North-East (WNW-
ESE) direction. 
 

Fig. 10(a and b) and Fig. 11(a and b) show 3D 
Euler depth solutions for location of the 
basement rock contact and/or faults with dykes 
(N= 0 for contacts, 1 for sill / dyke / fault, 2 for 
pipe / horizontal bodies, and 3 for spherical 
bodies) that were grouped into four groups, those 
below 150 m, 150 m to 300 m, those between 
300 m to 450 m and those above 450 m 
respectively and in the four maps, contact and/or 
faults with dykes (N= 0 for contacts, 1 for sill / 
dyke / fault, 2 for pipe / horizontal bodies, and 3 
for spherical bodies) between 300 m – 400 m 
depth dominates. Also, when Euler solutions with 
structural index of one (SI=1) were plotted on the 
HGM map (Fig. 12a), the resultant map has 
shown that the two method can contribute in 
delineating the general structural framework of 
the study area. 
 

The SPI map for the study area Fig. 12b displays 
depth to magnetic sources across the study area. 
The white portions on the map signify areas, 
where the derivative used for the estimation of 
the local wavenumber is so small that the SPI 
structural index cannot be estimated reliably. 
Depths to magnetic source bodies within the 
study area vary from 58.205 m to 588.153 m. 
Some deep zones (588.153 m) to source bodies 
were observed in various parts of the map. The 
deep zones are more pronounced in the north-
western and north-eastern parts of the study 
area and the southern part of the study area. 
Depth from SPI can be correlated with depth 
obtained from 3D Euler deconvolution method.  
 

4. CONCLUSIONS 
 

Base on the results from the structural analysis 
of the aeromagnetic data, we conclude that, the 

study area has been affected and dissected by 
two predominant sets of structures that trend 
ENE-WSW and WNW-ENE with minor NE-SW, 
NW-SE, NNE-SSW and NNW-SSE. The 
occurrences of these structures are predominant 
within 300 m to 450 m depth as obtained from 3D 
Euler deconvolution. These depths correlate with 
depth obtain from source parameter imaging 
which shows that the two methods complement 
each other in depth to magnetic source 
estimations. 
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