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ABSTRACT 
 

In this article, a generalized varying gravitational scalar potential was used to completely define the 
metric tensors and coefficients of affine connections for spherical massive bodies whose tensor field 
varies with time, radial distance and polar angle. The completely defined metric tensors and 
coefficients of affine connections were used to study Einstein’s equations of motion for test particles 
within this field. The results obtained to the limit of 0c  reduced to the corresponding Schwarzchild 
equations and to the limit of 2c , it contained additional terms not found in Schwarzchild equations 

which can be used in the study of blackhole and gravitational wave in this field and other 
astrophysical phenomena. 
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1. INTRODUCTION 
 
General Relativity is the geometrical theory of 
gravitation published by Albert Einstein in 
1915/1916. It unifies Special Relativity and Sir 
Isaac Newton’s law of universal gravitation with 
the insight that gravitation is not due to a force 
but rather a manifestation of curved space and 
time, with the curvature being produced by the 
mass-energy and momentum content of the 
space-time. General Relativity is the most widely 
accepted theory of gravitation. In actual fact, the 
mathematical material (namely, differential 
geometry) needed to attain a deep 
understanding of general relativity is not 
particularly difficult and requires a background no 
greater than that provided by standard courses in 
advanced calculus and linear algebra [1]. 
 

After the publication of Einstein’s geometrical 
gravitational field equations (EGGFE) in 1915, 
the search for their exact and analytical solutions 
for all the gravitational fields in nature began [1-
3]. Schwarzchild first constructed the exact 
solution to this field equation in static and pure 
radial spherical polar coordinates in 1916 by 
considering astrophysical bodies such as the sun 
and the stars [4]. In Schwarzchild’s metric, the 
tensor field varies with radial distance only. 
Research has shown that spherical systems 
doesn’t depend on radial distance only, therefore 
in this article we study the complete Einstein’s 
equations of motion, for test particle exterior to 
spherical distribution of mass whose tensor field 
varies with time, radial distance and polar angle 
using our recent scalar potential constructed by 
[5]. 
 

2. THEORETICAL FRAME WORK 
 

The covariant metric tensors for this distribution 
of mass or pressure in spherical polar 

coordinates ( , , )f t r   constructed by [4,6-7] are 

given as:  
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The contravariant metric tensors for this field 
were obtained using Quotient Theorem [4,6-7] 
are given as  

 
1

00

2

2 ( , , )
1 .

f t r
g

c




 
  
                     

 (2.6) 

 

11

2

2 ( , , )
1 .

f t r
g

c

 
   

                             

(2.7) 

 

22

2

1
.g

r
                         (2.8) 

 

33

2 2

1
.

sin
g

r 
                       (2.9) 
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In our recent article [5], the gravitational scalar 

potential  ( , , )f t r   is given as  
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where .k GM  
 

Put equation (2.11) into (2.1), (2.2),(2.6) and 
(2.7) gives, 
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Expanding (2.12) binomially to order 2, gives 
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to the limit of    
2c (2.13) reduces to 
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Similarly expanding (2.15) binomially and taking 

to the limit of  2c   gives 
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Similarly expanding (2.17) binomially and taking 

to the limit of  2c   gives 
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Similarly expanding (2.19) binomially and taking 

to the limit of  2c   gives 
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The above results give the complete gravitational 
metric tensors for this field. Remarkably our 
metric tensors are similar to that obtained by 
[6,8]. 
 
The coefficients of affine connections, in [4,7,9-
10] by the metric tensors of space-time are 
determined using equations (2.1)-(2.10),  
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where g 
is the covariant metric tensors and 

,g  the contravariant metric tensors. 

 
Explicitly within this region, the coefficients of 
affine connections in terms of (�, �, �) are given 
by 
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To the limit of  2c ,  (2.23) reduces to 
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To the limit of  2c ,  (2.26) reduces to 
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To the limit of  2c ,  (2.29) reduces to 
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To the limit of  2c ,  (2.32) reduces to 
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To the limit of  2c ,  (2.35) reduces to 

 
2

1
00 2 2 2 2 2 2

.
2

k kt kt

c r c r c r
   

                                                                                       
 (2.36) 

 

 1 1
10 01 112

( , , )1
.

f t r
g

tc


   


                                                                                   (2.37) 

 
2

1 1
01 10 2 2 2 2

1 2 2
1 exp .

k kt kt k r
t

r cc c r c r c r

    
           

   
                                     (2.38) 

 

To the limit of  2c ,  (2.38) reduces to 
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To the limit of  2c ,  (2.41) reduces to 
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To the limit of  2c ,  (2.44) reduces to 
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To the limit of  2c ,  (2.46) reduces to 
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To the limit of  2c ,  (2.47) reduces to 
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To the limit of  2c ,  (2.52) reduces to 
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3. MOTION OF PARTICLES OF NON-ZERO REST MASS WITHIN THIS FIELD 
 

The general relativistic equation of motion for particles of non-zero rest masses in a gravitational field 
[4,7,11-12] is given by 
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The time equation of motion in this field [4] is given as 
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Simplifying (2.61) using binomial theorem and limiting the result to the order of  2c  gives 
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The radial, polar and azimuthal angle equations of motion [4] are given as 
 

1
.. . . .

2 2 2

2 ( , , ) ( , , ) 2 ( , , ) ( , , )1 2
1 1

f t r f t r f t r f t r
r t t r

r c tc c c

   


    
           

  

 
       

1 12. . .

2 2 2 2

1 2 ( , , ) ( , , ) 2 2 ( , , ) ( , , )
1 1

f t r f t r f t r f t r
r r

c c r c c t

   


 
    

          
 

 
2. .

2

2 2

2 ( , , ) 2 ( , , )
1 1 sin 0.

f t r f t r
r r

c c

 
  

   
      

   
                                      (2.65) 

 
22 2 2.. . . . . .

2 2 2 2

( , , ) 2 ( , , ) ( , , )1 1 2
1 sin cos 0.

f t r f t r f t r
t r r

rr c r c

  
    

 


  

                                   

(2.66) 

 
.. . .2

0.r
r

                                  (2.67) 

 

Substituting (2.11) into (2.65)-(2.67) and simplifying to the limit of 2c gives, 
 

2 2 22 2 2.. . . .

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2

k kt kt k kt kt k kt kt
r t r r

c r c r c r c r c r c r c c c


     
                 
       

 

              
22 2. . .

2

2 2 2 2 2 2 2

2 2
sin 0 .

2

k kt kt k kt kt
t r r

c r c r c r c c c
 

   
          

   

                                (2.68) 

 
2.. . . .2

sin cos 0.r
r

                                                            (2.69) 

 
.. . .2

0.r
r

                                                                      (2.70) 

 

For pure radial motion, 
. .

0   , hence (2.68) becomes 

 
 2 22 2 2.. . . . .

2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 .

2 2 2

k kt k t k k t k t k kt k t
r t r t r

c r c r c r c r c r c r c r c r c r

     
               
                       

(2.71) 

 
Integrating (2.70) that is the polar motion of the test particles that has radial dependence gives 
 

        
.

2
,

A

r
                                                                                             (2.72) 

 where A is the constant of integration. 
 
This motion has an inverse square dependence on the radial distance. 
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4.  MOTION OF PARTICLES IN THE 
EQUATORIAL PLANE WITHIN THIS 
FIELD 

 
The Lagrangian in the space time exterior to any 
astrophysical body is defined by [1,13], 

 

   

1

21
.

dx dx
L g

c d d

 


 

 
  

        (2.73) 

 

Thus in this field, the Lagrangian becomes 

 
1

2 2 2 2 2

00 11 22 33

1
.

dt dr d d
L g g g g

c d d d d

 

   

        
                                               (2.74) 

Considering orbit in the equatorial plane of a homogeneous spherical mass,   

 

2


 

 
 

Then, the Lagrangian equation reduces to (2.75) by substituting equation (2.14) and (2.16) into (2.74): 

 

           

1
12 2 2. .

2 2

2 ( , , ) 2 ( , , )1
1 1 .

f t r f t r
L t r

c c c

 
    

                                                   (2.75) 

 

It is an established fact that L  ,with 1  for time like orbits and 0 ,for null orbits [1]. Setting

L  ,in equation (2.75) and squaring both sides yields;   

 

    

12 2. .
2 2

2 2

2 ( , , ) 2 ( , , )
1 1 .

f t r f t r
c t r

c c

 


   
       

                 (2.76) 
 

Orbital shape (which is a function of azimuthal angle) is paramount in most applications of general 
relativity. Therefore it is very important to transform equation (2.76) in terms of the azimuthal angle  .  

 

Using the following transformation, with  r r  and  
 
1

u
r




  then, 

 

                      
. . dr
r

d



  or  

.

2
.

1

l dr
r

dr 



                           

(2.77)

  

 
But  
 

        

dr dr du

d du d 
      or     

2d r d u
u

d d 
                  

(2.78) 
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and thus,  

 
.

2
,

1

l dr
r

dr 



                                                                   (2.79) 

 
Substituting (2.77)-(2.79) into (2.76), gives 
 

 

2 1 2.
2 2

2 2 2
2

2 ( , , ) 2 ( , , )1
1 1 0.

1

f t r f t rdu
t c

d c cu

 




     

          
    

                        (2.80) 

 
Substituting (2.11) into (2.80), and for 1 , we have 

 

 

2 1 2.
2

2 2 2
2

1 2 2
1 exp 1 exp 0.

1

du k r k r
t t t c

d c cc r c ru

 




        

              
       

                   (2.81)   

 

Multiplying (2.81) by 

1

2

2
1 exp

k r
t

c r c




  
   

  
gives, 

 

 

2 2 12.
2

2 2 22

1 2 2
1 exp 1 exp 0.

1

du k r k r
t t t c

d c cc r c ru

 



 
        

              
       

             

(2.82) 

 
Simplifying the exponential terms and ignoring higher terms gives, 
 

 

2 12 22 2.
2

2 2 2
2

1 2 2
1 1 1 1 0.

2 21

du k t k t
t t t c

d c r c ru 

 
       

               
        

             (2.83)

  
 

For 0  which correspond to the equation of motion of light on null geodesic and substituting (2.11) 
into (2.80) gives, 
 

 

22.

2 2 2
2

2 1 2
1 exp 1 exp .

1

k r du k r
t t t

r c d r cc cu

 



       
           

       

            (2.84) 

 

Multiplying (2.84) by 

1

2

2
1 exp

k r
t

c r c




  
   

  
and simplifying gives, 

 

      

22.

2 2 4 2
2

1 4 4
1 exp exp 2 .

1

du k r k r
t t t

d c cc r c ru

 



      
          

     

            (2.85) 

 

In the order of
0 :c  equation (2.85) reduces to  



 
 
 
 

Maisalatee et al.; IAARJ, 3(1): 43-53, 2021; Article no.IAARJ.64615 
 
 

 
52 

 

 

22.

2
2

1
.

1

du
t

du 

 
  

 
                              (2.86) 

 
which on further simplification reduces to (2.87) 
 

 
.

2

1
.

1

du
t

du 

 
  

  
                              (2.87) 

 

In order of 
2 :c  equation (2.85) reduces to  

 

.

2 2

1 2
1 exp .

1

du k r
t t

d cu c r





  
    

   
                (2.88) 

 

Expanding 
2

2
1 exp

k r
t
cc r

  
   

  
 exponential term and ignoring higher terms gives, 

 
2.

2 2

1 2
1 1 .

21

du k t
t t

du c r

  
     

   
                (2.89) 

 
This is the photon equation of motion in this region. 
 

5. CONCLUSION 
 
The completely defined metric tensors for this 
field are given in equations (2.3)-(2.5), (2.8)-
(2.10), (2.14), (2.16), (2.18) and (2.20) while the 
completely defined coefficients of affine 
connections are given in equations (2.24), (2.27), 
(2.30), (2.33), (2.36), (2.39), (2.42), (2.45), 
(2.47), (2.49), (2.51), (2.54)- (2.58). 
 
Equation (2.64) is the expression for the variation 
of the time on a clock moving in this gravitational 
field. It is of same form as that in Schwarzschild’s 
gravitational field, though our result contained 
additional terms not found in the result obtained 
by Schwarzschild. The additional corrections 
terms in our results can be use to investigate the 
existence of gravitational waves even though the 
effect is very weak. Additionally, our results can 
be use in satellite communications likewise it can 
also be use in the study of black holes.  
 
Interestingly, our expression differs from [1]. In 

this article he obtained 

.

t  not as an exponential 
function dependent on his unknown function

( , )f   . Thus, our expression in its merit stands 

out uniquely, as an extension of the results in 
Schwarzschild’s field. 
 
The radial equation of motion (2.71) can be use 
to obtain the complete instantaneous speed of a 
particle of nonzero rest mass in this field. 
 
Equation (2.72) is the polar equation of motion 
which is an inverse square equation that 
depends on the radial distance as obtained by 
[4,11].  

 
Equation (2.83) is the planetary equation of 
motion for test particles in the region of rotating 
homogenous spherical mass which when solved 
will reveal the perihelion precision of planetary 
orbits within this field. 

 
Instructively, equation (2.89) is the first 
constructed equation of motion for photon in this 
field using variable gravitational scalar potential. 
This equation contains additional terms that are 
not found in the well-known Schwartzchild’s 
equation, which shows the effect of gravity, radial 
distance and polar angle to the time equation of 
motion of photons in the equatorial plane of a 
rotating homogeneous spherical body. 
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The door is therefore open for the study of other 
astrophysical phenomena within this field such 
as the gravitational red-shift by the sun, time 
dilation, length contraction, Riemann-Christoffel 
tensors e.t.c using the metric tensors and 
coefficient of affine connections for this field. 
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