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Abstract 
Taylor vortex flow is one of the important vortex flows that have been studied 
since its classic study made by G. I. Taylor in 1923. State of the flow between 
inner and outer cylinders of a rotating co-axial cylinder transits from Couette 
flow to Taylor vortex flow and to wavy Taylor vortex flow as the increase of 
Reynolds number. This study has identified the critical Reynolds number 
when the flow changes from Taylor vortex flow to wavy Taylor vortex flow. 
The numerical analysis making use of the attractor in the chaos theory has 
been used in this identification of the critical Reynolds number. The calcu-
lated critical Reynolds numbers of each flow mode are almost identical to the 
values obtained by the visualization experiment at small aspect ratios. In the 
region where the aspect ratio is larger than the ratio at the peak critical Rey-
nolds number, the distribution of the Reynolds number is qualitatively simi-
lar between the calculated and experimental values. 
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1. Introduction 

Taylor vortex flow is one of the important vortex flows that have been studied 
since its classic study made by G. I. Taylor in 1923 [1]. State of the flow between 
inner and outer cylinders of a rotating dual cylinder transits from Couette flow 
to Taylor vortex flow and to wavy Taylor vortex flow as the Reynolds number 
changes and as an aspect ratio increases [2] [3] [4]. The aspect ratio is defined to 
be the ratio of the gap between inner and outer cylinders to cylinder height. The 
Taylor vortex flow is the one where torus flows, called cells, are stacked. The 
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wavy Taylor vortex flow is the one where every vortex of the Taylor vortex flow 
is subjected to the axial cyclic oscillation resulting in wavy and unstable flow 
over time [5] [6]. 

Since Taylor’s study, Taylor vortex flow has been studied by many researchers, 
and the complexity of the flow has been clarified. Unsteady flow (e.g. Taylor 
vortex flow) causes an unstable change in the physical quantities that character-
ize the flow. Pacheco et al. [7] showed experimentally that in small aspect-ratio, 
Taylor-Couette flows have a band in the parameter space where rotating waves 
become steady non-axisymmetric solutions via infinite-period bifurcations. Martin 
et al. [8] showed that imposing axial flow in the annulus and radial flow through 
the cylindrical walls in a Taylor Couette system alters the stability of the flow. To 
analyze these unsteady flows, authors focused on quantitative values such as 
mean energy [9]. The kinetic energy and enstrophy for flows with different final 
modes are compared. 

The critical Reynolds number when the flow state transits from the Taylor 
vortex flow to wavy Taylor vortex flow has been found by a visualization expe-
riment of the flow when the aspect ratio is small. In the numerical analysis of the 
transition to the wavy Taylor vortex flow, the critical value, at which the wavy 
Taylor vortexes are generated by the changes of the aspect ratio, has been identi-
fied by obtaining changes in the kinetic energy due to axial velocity in every cell. 
However, the analysis has not yet extended until the changes in the kinetic 
energy converge. It should be noted that comparison between result of the expe-
riment and of the numerical analysis is insufficient. In this study, the Taylor 
vortex flow in the normal mode, when the cylinder ends are fixed, is numerically 
analyzed based on chaos theory methodology. The purpose of the numerical 
analysis is to identify the critical Reynolds number when the flow state transits 
from the Taylor vortex flow to wavy Taylor vortex flow at various aspect ratios 
and at various number of cells. 

2. Numerical Method 

The Reynolds number Re is a dimensionless number, defined as the ratio of the 
inertial force in the equation of motion to the viscous force, and is given by 

Re VD ν=                               (1) 

Here, V is a representative velocity, given as the rotation speed of the inner 
cylinder ( inr ω ), D is the width of the gap between the inner and outer cylinders, 
given by the difference between their representative radii as rout −rin, and ν  is 
the kinematic viscosity of the fluid. rout = 30 cm and rin, = 20 cm, and the radius 
ratio is 0.666. The physical parameters are made dimensionless by using the gap 
as the representative length and the velocity of the inner cylinder as the repre-
sentative velocity. The aspect ratio Γ is defined as the ratio of the cylinder length 
L to the gap width D and is given by 

L DΓ =                             (2) 
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The governing equations are the unsteady three-dimensional incompressible 
Navier-Stokes equation with cylindrical coordinates (r, θ, z) and the continuity 
equation. 

We use both SOR and ILUCGS methods to solve Poisson’s equation for pres-
sure. The stress-free boundary condition was used for the upper-end wall and 
the stationary (non-slip) condition is used for the lower end wall. We applied 
Neumann conditions based on the momentum equation for pressure. As the ini-
tial condition, all velocity components are zero. Mixed solution of water and 
glycerin is assumed to be the working fluid, and its dynamic viscosity is 6.0 × 
10–6 m2/s. For the discretization method, we apply the QUICK method for con-
vection terms, the second-order central difference method for the other space 
integration, and Euler’s method for time integration. Grids are staggered and 
equidistant in each direction. The number of grid points is 41 in the radial direc-
tion, and the number of grid points in the axial direction is proportionally ad-
justed so that it becomes 41 for the aspect ratio of 1.0. The number of grid points 
in the circumferential direction is 74. In order to examine the validity of the 
number of grid points, we analyzed Taylor vortex flow using several types of gr-
ids under various numerical conditions, and concluded that there are no differ-
ences among the modes that are finally formed, the formation of modes up to 
the final mode, and the manner of decay of the vortexes. 

3. Mode Analysis Method 

In the preceding studies on the numerical analysis, the changes in kinetic energy 
of axial velocity in every cell have been used to identify whether the flow state is 
the Taylor vortex flow or wavy Taylor vortex flow. This identification is possible 
because the Taylor vortex flow is defined to be the wavy Taylor vortex flow when 
the Taylor vortex flow becomes non-linear and unstable due to the cyclic axial 
oscillation. The criterion for this identification is the amplitude of the kinetic 
energy changes, and the flow state is identified to be the wavy Taylor vortex flow 
when the amplitude in the neighborhood of the estimated critical Reynolds 
number reaches or exceeds this criterion. When the amplitude is less than (does 
not reach) this criterion, the flow state is identified to be the Taylor vortex flow. 
The mode is decided based on the amplitude when TS is 2,000,000 (at TS = 
2,000,000). The critical Reynolds number when the flow transits from the Taylor 
vortex flow to wavy Taylor vortex flow are decided. The computation for a 
relatively short period of time when TS is 2,000,000 (at TS = 2,000,000) reveals 
that the flow between inner and outer cylinders at around the critical Reynolds 
number is unsteady, and the computation is not extended to the point where the 
kinetic energy changes converge. Therefore, the flow state may have been de-
cided to be the wavy Taylor vortex flow based on the kinetic energy changes 
even when the Taylor vortex flow is unsteady. The criterion of the energy am-
plitude is decided by the trend of energy amplitude changes in the neighborhood 
of the estimated critical Reynolds number, and thus the wavy Taylor vortex flow 
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may exist even when the energy amplitude is less than the criterion. It will be 
difficult to decide the criterion that can clearly identify the Taylor vortex flow 
from wavy Taylor vortex flow or vice versa. 

In this study, axial velocity changes in the Taylor vortex flow is expressed with 
an attractor in the chaos theory by taking the above into considerations. The 
mode of finally stabled flow and convergence of energy changes are decided re-
spectively based on the changes and convergence of attractor orbit. 

3.1. Mode Identification 

The flow state of the Taylor vortex flow bifurcates from one state to another 
state as the rotation speed of the inner cylinder increases. The flow state, reached 
when the rotation speed of the inner cylinder is gradually increased while keep-
ing the flow stable, is called the primary mode. The flow state, reached when the 
rotation speed is rapidly increased until the speed reaches the specific speed, is 
called the secondary mode. In the case where both ends of the cylinder are fixed, 
the primary mode corresponds to the normal mode and the secondary mode has 
the normal and anomalous modes. When the flow has even number of vortexes 
rotating from the outer cylinder towards the inner cylinder on both ends, the 
mode of the flow is called the normal mode. When the number of vortexes ro-
tating from the inner cylinder towards the outer cylinder on both ends or on the 
one end is odd or even, the mode of the flow is called the anomalous mode. In 
the numerical analysis, the Reynolds number is increased from 0 (zero) to the 
target value at constant increase rate and at the specified number of time steps. 
Thus, the increase rate of Reynolds number is decided by the number of time 
steps, and the mode of the flow and the number of cells may bifurcate depending 
on the increase rate. The condition(s) of the increase rate to make the mode bi-
furcate is not clarified. 

Therefore, the number of time steps is arbitrarily set in this study, and the 
vector diagram of the flow velocity across the axial cross-section between inner 
and outer cylinders is drawn at this number of time steps in order to see if the 
number of cells expected in this analysis is obtained and to see if the normal 
mode of the Taylor vortex flow is generated. 

After checking that the number of cells expected in this analysis and the con-
dition(s) to generate the normal mode vortexes, the numerical analysis is run 
and is kept running until the energy fluctuation in the cells converges. The at-
tractor is created based on the axial velocity changes in the Taylor vortex flow 
which is located in the lowest layer of the gap between inner and outer cylinders. 
The axial velocity is analyzed at points ① through ④ in Figure 1. In this fig-
ure, MZ is the number of nodes in axial direction and CN is the number of cells. 

3.2. Creation of Attractor 

The attractor means an “orbit on which the physical quantity in the phase space 
converges”, and when the attractor shows signs of remaining the constant orbit,  
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Figure 1. Points at which axial velocity is analyzed. 

 
it can be deemed that changes in physical quantity have been converged. The at-
tractor changes its shape with varying parameter. The parameter of the flow in 
the gap between inner and outer cylinders of the rotating dual cylinder is the 
Reynolds number (Re). The shape of the attractor varies with increase of Rey-
nolds number and it follows the process described with Ruelle-Takens-Newhouse 
scenario shown in Figure 2. When the flow has Reynolds number less than Re0, 
it is the linear flow that does not fluctuate with time and the attractor converges 
at one point called the equilibrium point or fixed point. When the Reynolds 
number of the flow reaches Re0, the flow becomes non-linear which oscillates at 
frequency (ω1), and the attractor converges into the circular orbit called the limit 
cycle. When the Reynolds number reaches Re1, the flow becomes the one that 
has two frequencies (ω1 and ω2), and the attractor takes the form of T2 torus. 
When the Reynolds number exceeds Re2, the flow becomes to have one addi-
tional frequency and the attractor takes the form of T3 torus. When the Rey-
nolds number exceeds Rec, the flow becomes turbulent, and the attractor be-
comes the chaotic attractor. In this state, the attractor has a wide spectrum. 

In this study, the functions, W (w (t), w (t + τ), and w (t + 2τ)) that can draw 
the attractor in the three-dimensional coordinate system are embed as shown in 
Figure 3 by incorporating the delay time (τ) in the axial velocity changes (w (t)). 
The attractor based on the axial velocity changes is drawn as shown in Figure 4 
by plotting the function (W ) on the phase space of the three-dimensional coor-
dinate system. In drawing the attractor, the delay time (τ) is set to be “τ = f/4” 
which is equal to one cycle (f ) of the autocorrelation function of the axial veloc-
ity changes (w (t)) as shown in Figure 5. The autocorrelation function is derived 
by obtaining the first-order autocorrelation coefficient (r) calculated by the next 
equation. When the axial velocity does not have constant period and the delay 
time is unobtainable, t = 1 is set to be the delay time in creating the attractor. 
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Figure 2. Ruelle-Takens-Newhouse scenario. 

 

 
Figure 3. Embedding of functions W (w (t), w (t + τ), and w (t + 2τ)) into three-dimen- 
sional coordinate system. 
 

 
Figure 4. Attractor drawn in three-dimensional coordinate system. 
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3.3. Mode Determination with Attractor 

The mode that can finally and stably exist under the condition(s) is decided 
based on the created attractor. In the case where the vortex mode is the Taylor  
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Figure 5. Autocorrelation function (r (t)) of axial velocity (w (t)). 
 
vortex flow, the final axial velocity is constant because the Taylor vortex flow 
does not fluctuate with time. Thus, the attractor converges at the fixed point. In 
the case where the vortex mode is the wavy Taylor vortex flow, the attractor 
converges in the limit cycle or in the quasi-torus orbit because the final axial ve-
locity oscillates at one frequency or multiple frequencies. Taking these behaviors 
of the attractor into account, the mode that can finally exist in the flow meeting 
the computation conditions is decided. 

In this study, the attractor is created based on the axial velocity change at 
every 1,000,000 of the calculation Time Step (TS) (TS = 1,000,000), and the con-
vergence of the attractor is monitored to decide if the changes in vortex energy 
converge and to decide the mode. Since a huge amount of time is required in the 
numerical computation, the number of time steps is limited to 10,000,000 (TS = 
10,000,000) and when the attractor does not converge at this limit, the mode is 
decided based on the changes of the attractor orbit. The attractors are col-
or-coded with different color at every 1,000,000 (TS = 1,000,000) and they are 
superimposed to make it easy to check if the attractor orbit converges or not, 
and to monitor changes of the attractor. Figure 6 and Figure 7 indicate the at-
tractor’s behavior respectively in the case of the Taylor vortex flow and wavy 
Taylor vortex flow. 

When the attractor converges in the circular orbit or keeps expanding while 
forming the circular orbit until TS = 10,000,000, it can be considered that the at-
tractor does not converge at the fixed point and the flow is decided to be the 
wavy Taylor vortex flow. When the attractor orbit has diminished, it can be con-
sidered that the attractor finally converges at the fixed point and the flow is de-
cided to be the Taylor vortex flow. In practice, the axial velocity change of the 
Taylor vortex flow cannot converge finally and completely at the fixed point, but 
it keeps exhibiting the microscopic fluctuations. The attractor does not converge 
at the fixed point. That is, the flow is decided to be the Taylor vortex flow when 
the attractor does not draw the similar circular orbit. 

 

 

𝑓𝑓 
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Figure 6. Taylor vortex flow. 

 

 
Figure 7. Wavy taylor vortex flow. 

3.4. Determination of Critical Reynolds Number 

It is assumed that the accuracy of the Reynolds number is +/−10 at a certain as-
pect ratio (Γ), and the critical Reynolds number is defined to be the number 
when the state of vortexes becomes completely wavy (i.e., the wavy Taylor vortex 
flow). It is assumed that, in the case where the flow state is the Taylor vortex 
flow under the Re1 condition, the state transits from the Taylor vortex flow to 
the wavy Taylor vortex flow under the Re2 condition, in which the Reynolds 
number is greater than the number in Re1 condition by 20. At this point, the 
critical Reynolds number is Re2 (i.e., Rec = Re2). 

4. Result of Numerical Analysis 

This section shows the attractor in the neighborhood of the critical Reynolds 
number at the aspect ratio at which the critical Reynolds number is calculated in 
this study. The attractor is numerically analyzed at the point ① through ④ 
shown in Figure 1. The form of the attractor is different from one point to other 
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points but the behavior of attractor’s change and the number of time steps to 
reach convergence is similar. The axial velocity component is largest at the point 
② among these four points, and the attractor created at this point ② is shown 
in this section. 

4.1. Normal Mode (Six Cells), Γ = 7.3 

Figure 8 indicates the changes of the attractor at Re = 1080 for the number of 
time steps from 2 million to 5 million. The attractor orbit changes linearly show-
ing very small orbit changes with the increase in the number of time steps. That 
is, the flow state is decided to be the Taylor vortex flow because the flow seldom 
changes with time. Figure 9 indicates the changes of the attractor at Re = 1100 
for the number of time steps from 7 million to 10 million. It is shown that the 
attractor draws the same orbit and that it converges into the limit cycle. There-
fore, the flow state is decided to be wavy (i.e., the wavy Taylor vortex flow). 
Based on the above observation, the critical Reynolds number (Rec) at the aspect 
ratio of 7.3 is determined to be 1100 (i.e., Rec = 1100). 

4.2. Normal Mode (Six Cells), Γ = 7.6 

Figure 10 indicates the attractor at Re = 1080 for the number of time steps from 
2 million to 5 million. The attractor orbit changes linearly showing very small 
orbit changes with the increase in the number of time steps. That is, the flow 
state is decided to be the Taylor vortex flow because the flow seldom changes 
with time. Figure 11 indicates the changes of the attractor at Re = 1100 for the 
number of time steps from 6 million to 8 million. It is shown in this figure that 
the attractor does not draw the constant circler orbit but the orbit varies 
three-dimensionally with the change of the time. However, changes of the orbit 
with the time steps are insignificant and the orbit is virtually identical. There-
fore, the flow state is decided to be wavy (i.e., the wavy Taylor vortex flow) 
because of the flow changes at the constant period. Based on the above observa 
 

 
Figure 8. Γ = 7.3 and Re = 1080 (Number of time steps = 2 million to 5 million). 
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Figure 9. Γ = 7.3 and Re = 1100 (Number of time steps = 7 million to 10 million). 

 

 
Figure 10. Γ = 7.6 and Re = 1080 (Number of time steps = 2 million to 5 million). 

 

 
Figure 11. Γ = 7.6 and Re = 1100 (Number of time steps = 7 million to 10 million). 
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tion, the critical Reynolds number (Rec) at the aspect ratio of 7.6 is determined 
to be 1100 (i.e., Rec = 1100). 

4.3. Normal Mode (Six Cells), Γ = 7.7 

Figure 12 indicates the attractor at Re = 1040 for the number of time steps from 
7 million to 10 million. The attractor orbit keeps diminishing and its change 
keeps decreasing as the time steps increase. That is, the flow state is decided to 
be the Taylor vortex flow because the flow seldom changes with time. Figure 13 
indicates the attractor at Re = 1060 for the number of time steps from 7 million 
to 10 million. The flow state is decided to be wavy (i.e., the wavy Taylor vortex 
flow) because the attractor does not converge at the 10 million steps but the at-
tractor keeps forming and expanding the circle. Based on the above observation, 
the critical Reynolds number (Rec) at the aspect ratio of 7.7 is determined to be 
1060 (i.e., Rec = 1060). 

5. Discussion 

Figure 14 shows the distribution of the critical Reynolds numbers obtained by 
this numerical analysis and by the previous experiments. White points indicate 
the Reynolds numbers obtained by the numerical analysis, and black points do 
the Reynolds numbers obtained by the experiments. Circle, rectangle, triangle, 
and X show 2 cells, 4 cells, 6 cells, and 8 cells, respectively. This numerical analy-
sis for 6 cells is carried out respectively at the aspect ratio between 7.3 and 7.7 
(i.e., Γ = 7.3-7.7), and the analysis for 8 cells is carried out respectively at the as-
pect ratio between 6.0 and 6.2 (i.e., Γ = 6.0-6.2). The critical Reynolds number is 
calculated for 6 cells at the aspect ratio of 7.3, 7.6, and 7.7 (i.e., Γ = 7.3, 7.6, and 
7.7). Comparison of distribution of the calculated and experimental values re-
veals that, at each cell, the critical Reynolds numbers are almost identical from 
the Reynolds number at small aspect ratio to the vicinity of the peak of Reynolds 
number. Even in the case of 8 cells, the critical Reynolds number that would be 
 

 
Figure 12. Γ = 7.7 and Re = 1040 (Number of time steps = 5 million to 8 million). 

https://doi.org/10.4236/wjm.2019.97012


H. Furukawa et al. 
 

 

DOI: 10.4236/wjm.2019.97012 188 World Journal of Mechanics 
 

 
Figure 13. Γ = 7.7 and Re = 1060 (Number of time steps = 6 million to 9 million). 

 

 
Figure 14. Distribution of critical Reynolds number when the flow state transits from 
normal mode Taylor vortex flow to wavy Taylor vortex flow in rotating dual cylinder 
whose both ends are fixed. 

 
obtained by the numerical analysis is expected to be identical to the Reynolds 
number obtained by the experiment, from the small aspect ratio to the vicinity of 
peak of Reynolds number. At any cells, the distribution of the Reynolds number 
after their peak is qualitatively similar between the calculated and experimental 
values. But, the experimental stability limit of the Taylor vortex flow is lower 
than the calculated stability limit. The difference between the experimental and 
calculated stability limit is significant at around the peak of the critical Reynolds 
number, and the aspect ratio at which the calculated value hits its peak is larger 
than the aspect ratio at which the experimental value hits its peak. It is also 
shown that the difference between the calculated and experimental values in-
creases as the number of cells increases. This difference will be attributable to the 
pattern of changes in cell boundary plane of the wavy Taylor vortex flow at the 
aspect ratio after the peak and to the relaxation time of the flow used in the visu-
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alization experiment. 
In the case of the Taylor vortex flow, the boundary plane between cells will fi-

nally become horizontal at a constant height. Since the boundary plane of the 
wavy Taylor vortex flow is usually wavy, it will be possible to distinguish the 
wavy Taylor vortex flow from the Taylor vortex flow by observing the cross-section 
of vortexes in axial direction. However, it is confirmed with the visualization 
experiment that the fluctuation of the boundary plane of the wavy Taylor vortex 
flow can have two patterns (horizontal and wavy patterns) after the peak. When 
the boundary plane is horizontal, it does not stay at the constant height but os-
cillates up and down while keeping the horizontal line. In other words, the 
boundary plane is wavy due to the repeated expansion and contraction of the 
entire cell. Normally, the cell boundary plane of the Taylor vortex flow is hori-
zontal. When the Taylor vortex flow is unsteady, the boundary plane may have 
similar oscillation because the plane keeps oscillating periodically. It is presuma-
ble that, in the experiment, the wavy Taylor vortex flow and unsteady Taylor 
vortex flow may have been confused making the experimental critical Reynolds 
number lower. However, it is not clear if the periodic component of the unstea-
dy Taylor vortex flow makes the cell boundary oscillate or not. The critical Rey-
nolds numbers are not calculated in the neighborhood of the experimental val-
ues located in the region where the differences between the experimental and 
calculated values are observed, and thus the actual changes in the flow are not 
known. Therefore, it is necessary to review the experiment method and to redo 
the numerical analysis in the region outside of the neighborhood of the critical 
Reynolds number in order to identify the factor(s) contributing these differences. 

6. Conclusions 

This study has identified the critical Reynolds number when the state of the flow 
whirling between the inner and outer cylinders of the rotating dual cylinder 
transits from the Taylor vortex flow to wavy Taylor vortex flow. The numerical 
analysis making use of the attractor in the chaos theory has been used in this 
identification of the critical Reynolds number. 

The calculated critical Reynolds numbers at various number of cells are al-
most identical to the values obtained by the visualization experiment in the re-
gion between the Reynolds number at small aspect ratio and the vicinity of the 
peak of Reynolds number. In the region where the aspect ratio is larger than the 
ratio at the peak critical Reynolds number, the distribution of the Reynolds 
number is qualitatively similar between the calculated and experimental values. 
But, the experimental stability limit of the Taylor vortex flow is lower than the 
calculated stability limit. The difference between the experimental and calculated 
stability limit is significant at around the peak of the critical Reynolds number, 
and the aspect ratio at which the calculated value hits its peak is larger than the 
aspect ratio at which the experimental value hits its peak. This difference is as-
sumed to be attributable to the pattern of changes in cell boundary plane of the 
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wavy Taylor vortex flow at the aspect ratio after the peak and to the relaxation 
time of the flow. It is necessary to review the experiment method and conditions 
of the numerical analysis in order to verify this assumption. 
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