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Reviewers: 
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Abstract 
 

Data exploration tasks often require inversion of large matrices. The paper presents a new method of 
matrices inversion, which uses the basis exchange algorithm controlled by the convex and piecewise 
linear (CPL) inversion criterion function. Using basis exchange algorithms might increase the dimension 
of the inverted matrices and computational efficiency of the inversion tasks. Basis exchange algorithms 
are based on the Gauss-Jordan transformation which is used e.g. in the famous Simplex algorithm applied 
in linear programming.  
 

 
Keywords: Data exploration; large matrices inversion; basis exchange algorithm; Gauss-Jordan 

transformation; convex and piecewise linear (CPL) criterion functions. 
 

1 Introduction 
 
The number of large data sets is increasing rapidly at the present time. Such data sets are being transformed 
and explored in many ways for extracting useful information which are then used for decision support 
systems or in prognostic (regression) models [1,2]. Fisher′s discriminant analysis is one of the fundamental 
methods used in the decision support systems [3]. Finding  the Fisher′s solution involves the inversion of the 
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covariance matrix. The inversion of the covariance matrix becomes impossible by contemporary 
computational procedures when the dimension of data vectors is too large. The classical regression model is 
also based on the data matrix inversion and such model cannot be calculated when the dimensionality of data 
vectors exceeds a certain limit [3].   
 
New numerical techniques aimed at challenging inverting of large matrices are currently being developed 
[4,5,6]. The basis exchange algorithms may also be examined in this context [7,8,9]. The basis exchange 
algorithms are based on the Gauss-Jordan transformation [10]. The famous Simplex algorithm used in the 
linear programming is also based on this transformation [10]. There are many examples of linear 
programming problems with a great practical importance which were  based on large data sets and have been 
solved by the Simplex algorithm.  
 
The basis exchange algorithm specified directly to the task of matrices inversion is proposed and 
theroetically examined in the presented paper. The proposed here algorithm is controlled by the  convex and 
piecewise linear (CPL) inversion criterion function which is presented and analyzed in the paper. The 
presented paper contains, among others, the proof of the fundamental theorem about conditions when the 
minimum of the CPL inversion criterion function becomes equal to zero. 
 
According to our research hypothesis, the proposed method of matirces inversion should allow to increase 
the dimensions of the inverted matrices. It is also expected that computational efficiency of a new procedure 
of matrices inversion will be high. The proposed procedure of matrices inversion should also be useful in 
other tasks of exploratory analysis of large, high-dimensional data sets.     
 

2 Matrices Inversion in Discriminant Analysis    
 
Let us assume that m objects Oj (j = 1,….,m) are represented by the n-dimensional feature  vectors xj = 
[xj,1,...,xj,n]

T, or as points in the n-dimensional feature space F[n] (xj ∈ F[n]). Components xj,i of the feature 
vector xj represent numerical results of n measurements of different features xi (i = 1,….,n) of the j-th object 
Oj (xj,i ∈{0,1} or xj,i ∈ R).  
 
We assume that the feature vectors xj (j = 1,......, m) have been  divided into two learning sets C1 and C2 
labelled in accordance with the objects Oj category (class) ωk (k =1, 2). The learning set Ck contains mk 
feature vectors xj(k) assigned to the k-th category ωk, where m = m1 + m2:   

 

Ck =  {xj(k)}   (j ∈ Ik)  (1) 
 
Each learning set Ck can be characterized by the mean vector µµµµk and the covariance matrix ΣΣΣΣk: 
 

µµµµk =  Σ j  xj(k)  / mk     (2) 
 
and 
 

ΣΣΣΣk =  Σ j (xj(k) -  µµµµk) (xj(k) -  µµµµk)
T / (mk – 1)  (3) 

 
In accordance with the Fisher′s discriminant analysis, the feature vectors xj(k) from the learning set Ck (1) 
are projected on the line l(w) in the feature space F[n] (x ∈ F[n]) defined by the parameter vector w = 
[w1,...,wn]

T (w ∈ Rn) of the unit lenght (wTw = 1):    
 

l(w) =  {x: x = t w, where t ∈ R}  (4) 
 
The feature vectors xj(k) from the learning set Ck (1) are projected on the points xj(k) = wTxj(k) of the line 
l(w) (4). Similarly, the mean vector µµµµk (2) is projected on the point µk of the line l(w) (4): 
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µk(w)  =  wTµµµµk  (5) 

 
As a  result of the feature vectors xj(k) projection on the line l(w) (4), the covariance matrix ΣΣΣΣk (3) can be 
replaced by the variance σk

2(w) of the points  xj(k) = wTxj(k) projected on the line l(w) (4): 
 

σk
2(w) =  Σ j (xj(k) - µk)

2 / (mk – 1)  (6) 
 
The Fisher′s criterion used for the discriminative vector w (4) choice can be formulated in the below manner 
[2]: 
 

F(w) =  (µ1(w) - µ2(w))2 / (σ1
2(w) + σ2

2(w)) → max   (7) 
 
In accordance with the Fisher′s criterion, the vector w defining the line l(w) (4) should be selected in such a 
way, that the distance |µ1(w) - µ2(w)| between the mean values µk(w) (5) is as large as possible while the sum 
σ1

2(w) + σ2
2(w) of the variances σk

2(w) (6) is small. 
 
The vector wF defining the maximal value of the Fisher′s criterion function F(w) (7) can be given in the 
below manner [3]: 
 

wF =  ΣΣΣΣp
-1 (µµµµ1 -  µµµµ2)   (8) 

 
where µµµµ1 and µµµµ2 are the mean vectors (2) and ΣΣΣΣp is the pooled covariance matrix (3) [2]: 
 

ΣΣΣΣp =   ((m1 - 1) ΣΣΣΣ1 + (m2 - 1) ΣΣΣΣ2) / (m1+ m2 - 2)  (9) 
 
The dimensionality n * n of the pooled covariance matrix ΣΣΣΣp (9) is defined by the dimension n of the feature 
space F[n]. The inversion of the matrix ΣΣΣΣp (9) becomes difficult or even impossible in highly dimensional 
feature spaces F[n]. 
 

3 Matrices Inversion in the Classical Regression Model    
 
Multivariate regression model can be based on the linear (affine) transformation of the n - dimensional 
feature vectors xj = [xj,1,...,xj,n]

T (xj ∈ F[n]) on the points tj
^ of the below line  (tj

^ ∈ R1) [2]:* 
 

(∀j∈{1,…,m})    tj
^ = t(xj) = wTxj + w0   (10) 

  
where w = [w1,...,wn]

T ∈ Rn and w0 ∈ R1. 
 
Properties of the model (10) depend on the vector of parameters (weights) w and the threshold w0. The 
weights wi and the threshold w0 are estimated from regression learning sets Cr. The regression learning sets 
Cr can have the below structure [3]: 
 

 Cr = {xj; tj} =  { xj,1,…., xj,n,; tj},  where  j = 1,….., mr  (11) 
 
We can assume here that each of mr objects Oj is characterized in the above set Cr by values xj,i of n 
independent variables (features) xi, and by the observed value tj (tj ∈ R1) of the dependent  variable t. 
 
In case of the classical regression the parameters w and w0 of the model (10) are estimated on the base of the 
learning set Cr (11) in accordance with the last squares method [2]. In this approach the sum of the squared 
differences (tj - tj

^)2 between the observed target variable tj and the modelled variable  tj
^ (10) is minimized. 

The optimal solution v*  = [-w0
* , (w*)T]T

 of such minimization problem can be given as [2]: 
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v* = (YT Y)-1 Y T t  (12) 

  
where the matrix Y is constituted by mr augmented feature vectors yj = [1, xj

T]T of the dimensionality n + 1: 
 

YT = [y1,…, ymr]  (13) 
 
and (11) 
 

t = [t1,…, tmr]
T  (14) 

 
Computing (12) the optimal vector v* (12) includes the inversion of the matrix YTY which has the dimension 
equal to (n +1) (n +1).  
 
Similarly to the pooled covariance matrix ΣΣΣΣp (9), the inversion of the matrix YTY (12) becomes difficult or 
even impossible in the highly dimensional feature space F[n]. The maximum size of the reversible matrix ΣΣΣΣp 
(9) or YTY (12) depends on the used reversing method and their implementation. The use of the basis 
exchange algorithms gives a chance for inreasing the size of the such matrices ΣΣΣΣp (9) or YTY (12) which can 
be  computationally inverted in practice. 
 

4 The Basis Exchange Algorithms 
 
The basis exchange algorithm was initially proposed and developed as an efficient tool for designing linear 
classifiers and examining linear separability of large, multidimensional data sets. The first version of the 
basis exchange algorithm was described with details in the papers [7] and [8]. Originally, the basis exchange 
algorithms aimed at an efficient minimization of the perceptron criterion function. The convex and piecewise 
linear (CPL) perceptron criterion function links the linear separability concept, which is fundamental in the 
theory of neural networks [10,11,3]. Variety of the CPL criterion functions were proposed later and used for 
controlling different types of basis exchange algorithms [9].  
 
The k-th basis Bk is the squared, non-singular matrix with the n rows bi(k): 
 

Bk = [b1(k),…, bn(k)]T  (15) 
 
The dimension of each vector bi(k) is equal to n. 
 
The inverse matrix Bk

1 during the k-th stage can be represented in the below manner: 
 

Bk
-1 = [r1(k),…, rn(k)]  (16) 

  
The vectors bi(k) and ri′(k) fulfil the below equations: 
 

(∀i,i ′ ∈{1,…,n})    bi(k)Tri(k) = 1, and   
                           if  i′ ≠ i,  then  bi(k)Tri′(k) = 0   

 (17) 

 
During the k-th stage of the the basis Bk (15) is changed into the basis Bk+1. The matrix Bk+1 is created from 
the matrix Bk (15) through replacing the l-th row bl(k) by the new vector zk taken from a given data matrix Z 
which contains m′ vectors zj with the dimension equal to n: 
 

Z = {zj: j = 1,…, m′ }  (18) 
 
The exchange of the l-th basis vector b1(k) (15) on the entry vector zk results in the new basis Bk+1 (15) and 
the new inverse matrix Bk+1

-1 = [r1(k+1),…, rn(k+1)] (16). The Gauss-Jordan transformation allows to 
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compute efficiently the columns ri(k+1) of the matrix Bk+1
-1 on the basis of the columns ri(k) (16) of te 

inverse matrix Bk
-1, where k = 0, 1,..., K  ([7], [8]): 

 
              rl(k+1) = (1 / rl(k)Tzj(k)) rl(k)  (19) 
 
and 
 
               (∀i ≠ l)      ri(k+1) = ri(k) – (ri(k)Tzj(k)) rl(k+1) =   
                                             = r i(k) – (ri(k)Tz j(k) / rl(k)Tzj(k)) rl(k) 

  (20) 

 
The basis exchange algorithms are based on the Gauss-Jordan transformation (19), (20). The index l of the 
vector b1(k) which is removed from the basis Bk (15) during the k-th stage is determined by the exit criterion 
of a particular basis exchange algorithm. The entry criterion determines which vector zj(k) from the set Z (18) 
enters the new basis Bk+1 (15). The stop criterion allows to determine the final stage K of the basis exchange 
algorithm.  
 
The basis exchange algorithms can be controlled by various criterion functions belonging to the family of 
the convex and piecewise linear (CPL) criterion functions. The CPL criterion functions allow defining 
different goals for the basis exchange algorithms. The CPL criterion functions define the exit criterion, the 
entry criterion and the stop criterion of the basis exchange algorithms. These criterions are chosen in a way 
that ensures decreasing of the criterion function during each stage k of the algorithm.  
 
The basis exchange algorithms allow to generate sequences of square, non-singular matrices (bases) Bk              
(k = 1,…, K) in accordance with the Gauss-Jordan transformation [10]. 
 
Remark 1: The vector zj(k) cannot enter  the new basis Bk+1 (15) if the below condition is met:   
 

rl(k)Tzj(k)  = 0  (21) 
 
The above statement results directly from the Gauss-Jordan transformation. There should be no division by 
the zero in the equation (19). The condition (21) has also an interesting geometric interpretation as the move 
in the parameter space along the parallel hyperplane hj(k)  = {w: zj(k)

Tw = 1} [9].   
 

5 Matrices Inversion through Basis Exchange 
 
The Gauss-Jordan transformation (19), (20) can be used in the multistage procedure aimed at the inversion 
of the squared data  
 

Z = [z1,… , zn]   (22) 
  
The squared data matrix Z is composed of the n vectors zj of the dimensionality n.  
 
The vectors zi (22) are equal to the columns of the pooled covariance matrix ΣΣΣΣp (9), if this matrix is expected 
to be inversed for the Fisher′s solution wF (8) used in the discriminant analysis. In the classical regression 
model (12), the matrix YTY (12) should be inversed. In this case, the matrix Z (22) is composed of the n + 1 
vectors zj of the dimensionality n + 1 and the vectors zi (22) are equal to the columns of the matrix YTY (12).  
 
The proposed multistage procedure of the matrix Z (22) inversion begins (k = 0) with the matrices B0 (15) 
and B0

-1 (16) which are equal to the unit matrix I  = [e1,… , en]:  
 

B0 = B0
-1 = I  = [e1,… , en]  (23) 
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In this case, the vectors ri(0) (16) are equal to the unit vectors ei ((∀i∈{1,...,n}) ri(0) = ei).  The vectors ri(k) 
(16) are transformed in accordance with the dependencies (19) and (20) in successive stages k (k = 0, 1,..., K) 
on the basis of the indices l(k) and j(k):  
 

(l(0), j(0)), (l(1), j(1)),…, (l(K), j(K))  (24) 
  
The index l(k) of the vector bl(k) leaving the basis Bk (15) during the k-th stage should be  determined by the 
exit criterion. The index j(k) of the vector zj(k) (21) entering the basis Bk+1 (16) should be determined by the 
entry criterion. The vector zj(k) (21) which enters the basis replaces the vector bl(k) and constitutes the l(k)-th 
row of the matrix Bk+1 (16). The stop criterion determines the final stage K.  
 
During the multistage procedure of the matrix Z (21) inversion all the unit vectors ei in the matrix B0 (22) are 
expected to be replaced by the vectors zj (21). 
 
Remark 2: The multistage procedure of the data matrix Z (22) inversion succeeds if and only if each unit 
vectors ei in the matrix B0 (23) is replaced by some vector zj′ (22). In this case, the matrix BK

-1 (16) obtained 
after the K stages of the basis exchange is equal to the inverse matrix Z-1 (22): 
 

  Z-1 = BK
-1  (25) 

  
During the multistage procedure of the basis Bk (15) transformations not every exchange of the vector ei (22) 
on the vector zj′ (21) is feasible (Remark 1). Generally, the vector zi′ (22) cannot be entered into the basis Bk 
(16), if zj′ is a linear combination of such vectors zj, which were introduced earlier into the basis Bk [9].   
 

6 The Inversion Criterion Function  
 
The convex and piecewise linear (CPL) collinearity criterion functions have been defined recently and used 
for the purpose of extraction of collinear patterns from a high dimensional data set [10]. Similar CPL 
criterion function could be useful also in the task of large matrices inversion. Let us define for this purpose 
the below CPL penalty functions ϕj(w) on the basis of the n vectors zj (21) of the dimensionality n [12]: 
 

(∀zj ∈ Z (22))  (26) 
  
                                             1 - zj

Tw   if   zj
Tw ≤ 1 

         
              ϕj(w) = |1 - zj

Tw|  =                     
                                                                      
                                              zj

Tw - 1   if   zj
Tw >>>> 1 

 
where w = [w1,...,wn]

T is the weight vector (w ∈ Rn). 
 
The inversion criterion function Φinv(w) is defined here as the sum of the CPL penalty functions ϕj(w) (26) 
determined by the n vectors zj from the squared matrix Z (22): 
 

    Φinv(w) =  Σ ϕj(w)  
                                                    j = 1,…,n 

 (27) 

 
The inversion criterion function Φinv(w) is convex and piecewise linear (CPL) as the sum of the CPL penalty 
functions ϕj(w) (26). The minimal value Φinv(w

*) of the criterion function Φinv(w) (27) can be found 
efficiently by using the basis exchange algorithm [8]: 
 

  (∀w)   Φinv(w) ≥  Φinv(w
*) =  Φinv

*  ≥  0  (28) 
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The minimal value Φinv(w
*) of the criterion function Φinv(w) (27) is useful in the process of the matrix Z (22) 

inversion. 
 
In order to analyse properties of the inversion criterion function Φinv(w) (27) minimization the two types of 
the dual hyperplanes hj

1 and hi
0 in the n-dimensional parameter space Rn are introduced [10]. Each vector zj 

(22) allows to define the below dual hyperplane hj
1: 

 
  (∀j∈{1,…,n})   hj

1 =  {w: zj
Tw  =  1}  (29) 

  
Similarly, each of n unit vectors ei = [0,…,1,…,0]T defines the below hyperplane hi

0: 
 

 (∀i∈{1,…,n})   hi
0 =  {w: ei

Tw  = 0} = {w: wi = 0}  (30) 
  
where w = [w1,...,wn]

T ∈ Rn. 
 
Let us consider the k-th subset Sk of n linearly independent vectors zj (22) and ei (30):  
 

Sk = {zj: j∈Jk} ∪ {ei: i∈Ik}  (31) 
  
The set Sk is composed of rk feature vectors zj (j ∈ Jk) and n - rk unit vectors ei (i∈Ik).   
 
The intersection point of the rk hyperplanes hj

1 (29) defined by the vectors zj (j∈Jk) and the    n - rk  
hyperplanes hi

0 (30) defined by the unit vectors ei (i∈Ik) from the subset Sk (31) is called the k-th vertex wk in 
the parameter space Rn. The below linear equations can be linked to the vertex wk: 
 

   (∀j ∈ Jk)     wk
Tzj =  1                                                        (32) 

  
and  
 

   (∀i ∈ Ik)     wk
Tei =  0                                                        (33) 

  
  The equations (32) and (33) can be represented in the matrix form: 
 

      Bk
 wk = 1′ = [1,…,1,0,…,0]T                                                     (34) 

  
where the square, nonsingular matrix Bk is the k-th basis linked to the vertex wk: 
 

   Bk =  [zj(1),...,zj(rk),ei(rk+1),...,ei(n)]
T                                                        (35) 

 
and (16)  
 

  wk = Bk
-1 1′ = r1(k) +…+ rrk(k)                                                       (36) 

  
It can be proved that the minimal value Φinv

* (28) of the convex and piecewise linear criterion (CPL) 
function Φinv(w) (27) can be found in one of the vertices wk (36) [9,10]: 
 

   (∃wk
*) (∀w) Φinv(w) ≥  Φinv(wk

*) = Φinv
* ≥  0                                                      (37) 

  
The basis exchange algorithms allow to find efficiently the minimal value Φinv(wk

*) of the CPL criterion 
functions Φinv(w) (27) even in the case of high dimensional matrices Z (22).  
 
The inversion criterion function Φinv(w) (27) allows to precise the exit criterion, the entry criterion and the 
stop criterion according to the selected strategy of the this function minimization. These criteria should be 
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chosen in a such manner that the function Φinv(w) (27) decreases maximally during each learning step k. The 
steepest descent strategy is often used in the tasks of the CPL criterion functions minimization [9].  
 

7 The Minimal Value of the Inversion Criterion Function  
 
 Let us assume that the squared matrix Z (22) is reversible, so the matrix Z-1 = [r1,…, rn] (16) exists. In this 
case, the below linear equation (34) has well defined solution wZ: 
 

   Z wZ = 1 = [1,…,1]T                                                  (38) 
  
and 
 

   wZ = Z-1 1 = r1 +…+ rn                                                  (39) 
  
Lemma 1: If the data matrix Z (21) is reversible, then each of the n dual hyperplanes hj

1 (29) passes through 
the point wZ (39). 
 
This Lemma results directly from the set of the linear equations (38). The i-th equation in the set (38) has the 
form zi

TwZ = 1. This means that the i-th hyperplane hi
1 (28) passes through the point wZ (39). Therefore the 

solution wZ (39) is the point of intersection of all the hyperplanes hj
1 (28) defined by the n vectors zj (22). It 

also means that the point wZ (39) is one of the vertices wk (36). 
 
Lemma 2: If the squared matrix Z (22) is reversible (Z-1 exists), then the value Φinv(wZ) of the criterion 
function Φinv(w) (27) in the vertex wZ (39) is equal to zero: 
 

   Φinv(wZ) =  0  (40) 
   
Proof: If the j-th hyperplane hj

1 (29) passes through the point wZ (39), then zi
TwZ = 1. This  means that the 

value ϕj(wZ) of the j-th  penalty functions ϕj(w) (26) is eqal to zero in this point (ϕj(wZ) = 0). In accordance 
with the Lemma 1, each hyperplane hj

1 (29) passes through the vertex wZ (39). So, each penalty functions 
ϕj(w) (26) and the inversion criterion function Φinv(w) (27) are equal to zero in the point wZ (39).  
 
Theorem 1: The minimal value Φinv(wk

*) (37) of the inversion criterion function Φinv(w) (27) defined on 
elements zj of the data matrix Z (22) is equal to zero if and only if the matrix Z is reversible (Z-1 exists). 
 
Proof: As follows from the Lemma 2, the minimal value Φinv(wk

*) (28) is equal to zero if the data matrix Z 
(21) is reversible. In this case there exists such optimal vertex wk

*= wZ (39) that the minimal value Φinv(wk
*) 

(37) is equal to zero. We can also remark that the value Φinv(wk′) of the criterion function Φinv(w) (27) is 
greater than zero in any other vertex wk′ (36): 
 

(∀wk′ ≠≠≠≠ wk
*)  Φinv(wk′) >  0  (41) 

   
If the data matrix Z (22) is not reversible, then there does not exist a vertex wk′ (36) through which all the 
hyperplanes hj

1 (29) pass. If the j′-th hyperplane hj′
1 (29) does not pass through the vertex wk′ (36), then the 

penalty function ϕj′(w) (26) is greater than zero in the point wk′ (ϕj′(wk′) > 0). As a result Φinv(wk′) >  0.  
 
The minimal value Φinv(wk

*) (28) of the inversion criterion function Φinv(w) (27) can be found by using the 
basis exchange algorithm based on the Gauss-Jordan transformations (19), (20) of the inverse matrices Bk

-1 = 
[r1(k),…, rn(k)] (16) during successive steps k (k = 1,…, K). If the data matrix Z (22) is reversible, then after 
a finite number K (K = n) of the steps k the optimal vertex wK

* constituting the minimal value Φinv(wk
*) = 0 

(28) is reached. In this case, the matrix BK
-1 resulting from the Gauss-Jordan transformations (19), (20) of 

the matrices Bk
-1 is equal to the inverse data matrix Z (22) (Z-1 = BK

-1). 
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One of the useful properties of the minimal value Φinv(wk
*) (37) of the inversion criterion function Φinv(w) 

(27) is their invariance in respect to the reversible, linear transformation of the n vectors zj  constituting the n 
columns of the data matrix Z (22):   
 

   Φinv′(wk′) =  Φinv(wk
*)  (42) 

 
Where the symbol Φinv′(wk′) stands for the minimal value (37) of the criterion function Φinv′(w) (27) defined 
on the transformed vectors zj′: 
 

(∀j∈{1,…,n})   zj′=  A zj, where the matrix A-1 exists         (43) 
 
The invariance property (42) results from the below equalities  
 

   (∀j∈{1,…,n})  (w′)Tzj′=  wTzj, where  w′ = A-1 w  (44) 
 
So the penalty functions ϕj′(w′) (26) defined  on the transformed vectors zj′ (43) have the same values as the 
functions ϕj(w) in the point w: 
 

   (∀j∈{1,…,n})  ϕj′(w′) =  ϕj(w)    (45) 
 
The linear transformation (43) of the n vectors zj includes their scaling: 
 

   (∀j∈{1,…,n})   zj′=  sj zj, where  sj ≠ 0 (sj ∈ R1)         (46) 
   
We can also remark that the minimal value Φinv(wk

*) (37) of the criterion function Φinv(w) (27) is invariant to 
the scaling of the thresholds sj in the hyperplanes hj

sj (29).  
 

(∀j∈{1,…,n})   hj
sj =  {w: zj

Tw  =  sj, where sj ≠ 0 (sj ∈ R1)}  (47) 
   
The above invariance properties (42) of the minimal value Φ(wk

*) (37) of the CPL criterion function Φ(w) 
(27) encourage the use of this type of functions and the basis exchange algorithms also for the efficient 
solution of large, high dimensional systems of linear equations [7]:   
 

   A w = b         (48) 
 
where A is the matrix of dimension m * n and b = [b1,...,bm]T ∈ Rm is the m-dimensional vector. 
 

8 Concluding Remarks  
 
The convex and piecewise linear (CPL) inversion criterion function Φinv(w) (27) has been  defined here on 
the m vectors zj constituting the matrix Z (22). The CPL criterion function Φinv(w) (27) allows to select the 
exit criterion, the entry criterion and the stop criterion of the basis exchange algorithm aimed at the reversing 
of the matrix Z. The reverse Z-1 matrix can be computed efficiently by using the basis exchange algorithm. In 
this approach, the number K (24) of the basis Bk (35) exchanges is not greater than the dimensionality n of 
the feature space F[n] (K ≤ n). 
 
The convex and piecewise linear (CPL) criterion function Φinv(w) (27) can serve to solve also other problems 
related to the inversion of high dimensional matrices Z (22). In accordance with the Theorem 1, the minimal 
value Φinv(wk

*) (37) of the function Φinv(w) (27) is equal to zero if and only if the inverse matrix Z-1 exists. If 
the matrix Z is singular, the minimal value Φinv(wk

*) (37) is greater than zero (Φinv(wk
*) > 0). The minimal 
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value Φinv(wk
*) (37) can be used as the detector of the matrix Z (22) singularity. Such measure of singularity 

degree of the matrix Z (22) has useful invariance property (42).  
 
The relaxed linear separability method (RLS) of feature subset selection has been developed recently on the 
basis of the CPL perceptron criterion function [13]. The perceptron criterion function is used in the RLS 
method for efficient designing of linear classifiers and to evaluate the linear seprabilty of learning sets in 
different feature subspaces Fk[nk] (Fk[nk] ⊂ F[n]). One of the uses of the RLS method was to extract optimal 
subsets of genes from the Breast cancer data set [14]. The Breast Cancer data set contains descriptions of 46 
cancer and 51 non-cancer women. Each woman in this set was characterized by n = 24481 genes. The RLS 
method allowed to select the optimal subset of n1 = 12 genes and such linear combination of these selected 
genes, which correctly (100%) distinguish cancer from non-cancer women in this set. In this example, the 
dimension n * n of the inverted matrices almost reached the number 6*108 [14]. It’s possible to include the 
inversion criterion function Φinv(w) (27) into RLS method. Such inclusion could increase the range of 
applications of the RLS method. 
 
The presented here method of large matrices inversion is based on the basis exchange algortihm linked to 
minimization of the CPL inverse criterion function Φinv(w) (27). The basis exchange algortihms controlled 
by other types of the CPL criterion functions have been used in many tasks of data mining and machine 
learning [9]. For example, the optimal gene subset selection problem has been solved efficiently in 
accordance the mentioned above RLS method [14]. It has been shown experimentally that the basis exchange 
algortihms can supply effective tools for the exploration of large, multivariate data sets. 
 
The proposed method of matrices inversion could also be useful in other chalenging computational tasks. 
For example, computations of pseudo inverse covariance matrices in undersampled data sets could be 
performed this way [15].        
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