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ABSTRACT

In this paper, we have checked Stern-Gerlach experiment with the aim to study generic effect of an
applied magnetic field onto transversely directed beam of hydrogen-like atoms. The ultrarelativistic
phenomenon of spin of a Dirac particle (especially, electron spin) producing a continuum of linear
angular momentum with the known result of superluminal propagation, suggests the feasibility of
similar dynamics for a charged hydrogen-like particle under applied magnetic field, in spacetime.
Another mechanism, very important but popularly less comprehensible, which sustains this linear
momentum is known to be helical plane wave expansion. Hydrogen-like spherical waves cannot
perform this function due to the perturbation caused by the successive random orientations of
their atomic magnetic moment. It is therefore of vital import to investigate experimentally, as well
as analytically, the possibility of transformation from hydrogen-like spherical wave expansion to its
probable plane wave function, if we would extend our special subatomic theory of superluminal
particles to the atomic (hydrogen-like) level.
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1 INTRODUCTION

“Stern-Gerlach Experiment (SGE) or
Transformation from Spherical Wave Expansion
into Plane Wave Functions”. This could perfectly
fit in as the title for this article. But the implication
of the SGE application, or in general of the effect
of an applied magnetic field on a transversely
guided beam of hydrogen-like atoms in ground
state, which we prove (in the second paper of
this series) to result in excess of the speed
of light, is so vitally huge that it eclipses the
above function-label title put in quotation marks.
Multiple influential functional aspects have been
uncovered about this experiment from its first
exhibition in 1922 to date, and they include space
quantization, angular momentum and directional
quantization, measurement (for the first time) of a
ground state property of an atom and production
of a fully “spin-polarized” atomic beam, and
manifestation of the spin of the electron. This list
could not have ended there if the phenomenon of
spin were more comprehensible to the scientific
elite. Though Einstein and Ehrenfest [1] [2],
Heisenberg [3] [4], Phipps and Stern [5], and
others historically made early serious attempts,
through physical processes, to demonstrate
directional quantization in the SGE, not much
progress has been accomplished since, if not
controversies, rather.

It is worthwhile to better comprehend the
following physical (realistic) entities: spherical
wave, plane wave, magnetic moment, angular
momentum, spacial rotations and their relations
to the spin “non-realistic” phenomenon. Firstly
and most importantly, we must understand that
spherical waves do not and cannot produce a
continuum of linear angular momentum, simply
because of the system perturbation caused by
the successive and fast random orientations
of the hydrogen-like atomic nuclear magnetic
moment which is co-linear with the angular
momentum vector. A linear angular momentum
- our interest in this work and as exhibited in
the SGE (in spin-up and spin-down angular
momentum) - is always underpinned and can
only be sustained by a flow of helical plane

waves [6] [7] [8]. Secondly, it had not been an
easy task for the pioneers to reconcile the “non-
realistic” quantum theory and the actual physical
theory of the universe, namely special/general
relativity, for which cause emerged the joint-
theory of relativistic quantum field (with the
related topics thereof) [9] [10]. Especially, it is no
small matter to link or establish a mathematical
relationship between the subatomic non-realistic
spin phenomenon and the reality represented
by spacial rotations; however, based on the
geometry of Minkowski spacetime [11], using
the spinor map, we have been able to derive a
definite formula which is simple and predictable
but somewhat cumbersome to obtain, while at
the time we could neither imagine nor guess for
an inch how seminal our effort could be; one can
check and find the details in reference [12]. As
Louis Pasteur puts it, in science a situation of
coincidence only favours or makes things easier
for minds who have been prepared.

In the light of all these considerations, it should
by now appear plausible why we say it is not at
all a trivial matter to discern and demonstrate
that the SGE performs a transformation from
spherical wave expansion into hydrogen-like
helical plane wave functions, in spacetime. We
will revisit the SGE in order to determine the
analytical transformation which supports our
claim, using our result in reference [12]. In
Section 2 we briefly review the mathematics
behind the derivation of hydrogen-like spherical
wave functions in the context of Dirac relativistic
wave equation. We show in Section 3 that there
exists a class of spherical harmonic functions
whose quantum numbers l, k, and m satisfy a
certain mathematical relation, which brings to
feasibility the transformation.

2 THE RELATIVISTIC HYDROGEN-
LIKE SPHERICAL WAVE
FUNCTIONS

In a limited arena such as this paper, we will
restrict our considerations to our main interest,
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the spherical harmonics, which play an essential
part in the hydrogen spherical wave functions,
while holding a summary view on the remaining
ingredients, employing a combined approach [13]
[14] [15].

Let us consider the hydrogen atom in the context
of relativistic quantum theory using the Dirac
equation [9]. We regard the hydrogen atom as
one-particle system of reduced mass m, where
the electron orbits a dense and static nucleus
with spin in a central potential V (r) = −e2/r,
bringing the case to a Coulomb problem. The
Dirac equation which describes it is

Hψ = [HD + V (r)]ψ = εψ, (2.1)

where ψ, the eigenvalue ε, and HD denote
possible states of the electron, the electron
energy, and the Dirac Hamiltonian, respectively.

HD = cα · p+mc2β, (2.2)

and, α and β are the 4× 4 Dirac matrices.

The total angular momentum is given by

J = L + S , where L is the orbital angular

momentum, and S = (~/2)
(

σ 0
0 σ

)
, the

4 × 4 spin angular momentum matrix, with σ =
(σx, σy, σz) being the Pauli matrices. It can
readily be shown that J commutes with the
Dirac Hamiltonian HD, provided the potential
V is isotropic. We may, therefore, classify
eigenstates of HD according to the eigenvalues
of energy, J2 and Jz. Eigenstates of J2 and Jz
are readily constructed using the two-component
representation of S. They are the spherical
spinors defined below.

2.1 Spherical Harmonics and
Spherical Spinors

One can express the orbitals of a given state
in terms of two angular functions and two radial
functions of arguments the principal quantum
number n, a quantum number m, and an integer
k, defined by

k = {−j− 1
2

if j=l+ 1
2

j+ 1
2

if j=l− 1
2

, −j/2 ≤ m ≤ j/2 of step 1, (2.3)

where l, with 0 ≤ l ≤ n− 1, denotes the azimuthal quantum number.

The expression of the energy, obtained as a function of n and |k| (for |k| = j + 1/2), is based on the
ground state (or zero-point ) energy and given as

En,j = µc2
[
1 +

(
Zα

n− |k|+
√
k2 − α2

)2
]−1/2

, (2.4)

where µ is the reduced electron-proton mass, Z the atomic number (i.e., the number of protons)
and α ≃ 1/37 is the fine structure constant, which is a deterministic modification factor between the
energy solutions in the Dirac and Schrödinger equations.

Using the two-component spinors χµ=±1/2:

χ1/2 =

(
1
0

)
, χ−1/2 =

(
0
1

)
,

we can classify the solution to the Dirac-hydrogen equation for quantum numbers n, k, and m, as

Ψnkm =

(
gn,k (r) r

−1Ωk,m (θ, ϕ)
ifn,k (r) r

−1Ω−k,m (θ, ϕ)

)
=


gn,k (r) r

−1

√
k+ 1

2
−m

2k+1
Yk,m−1/2 (θ, ϕ)

−gn,k (r) r
−1sgn k

√
k+ 1

2
+m

2k+1
Yk,m+1/2 (θ, ϕ)

ifn,k (r) r
−1

√
−k+ 1

2
−m

−2k+1
Y−k,m−1/2 (θ, ϕ)

−ifn,k (r) r
−1sgn k

√
−k+ 1

2
−m

−2k+1
Y−k,m+1/2 (θ, ϕ)

 ,

(2.5)
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where Ω±k,m, known as spherical spinors, are the two-component spinors formed by the entries
involving the spherical harmonic functions Y±k,m∓1/2, shown to the right, which in turn are defined
as follows

Ya,b (θ, ϕ) = {
(−1)b

√
2a+1
4π

(a−b)!
(a+b)!

P b
a(cos θ)eibϕ if a>0

Y−a−1,b(θ,ϕ) if a<0. (2.6)

Here P b
a is an associated Legendre polynomial in x = cos θ, which is a canonical solutions of the

general Legendre equation(
1− x2

) d2

dx2
Pm
l (x)− 2x

d

dx
Pm
l (x) +

[
l (l + 1)− m2

1− x2

]
Pm
l (x) = 0. (2.7)

In quantum mechanics, spherical harmonics obey the orthogonality condition∫ π

θ=0

∫ 2π

ϕ=0

Y m
l Y m

′
⋆

l
′ dΩ = δll′ δmm

′ , (2.8)

where ⋆ stands for “complex conjugate” and dΩ = sin θdθdϕ, leading to the normalization condition∫
|Y m

l |2 dΩ = 1 (2.9)

in order to guaranty that probability is normalized, and where one must note that the notations Y m
l

and Yl,m. are identically the same.

Under rotation transformation R about the origin of a given coordinate system which takes the unit
vector r to r

′
, a spherical harmonic of degree l and order m transforms into a linear combination of

spherical harmonics of the same degree:

Y m
l

(
r

′)
=

l∑
m

′
=−l

[
D

(l)

mm
′ (R)

]⋆
Y m

′

l (r) , (2.10)

with D
(l)

mm
′ (R) being a Wigner D-matrix of order (2l + 1) which depends on R. Equation (2.10)

describes a group theoretical property (i.e., a rotational behaviour) of spherical harmonics. In particular,
it can be shown that the functions Y m

l of degree l form a complete orthonormal basis for the irreducible
representation of the group SO (3) of dimension (2l + 1). This symmetry property paves the way to
bringing cumbersome solutions of some analytical problems on spherical harmonics (such as the
Addition theorem) to simplified form.

The parity operator P maps r → −r. In spherical coordinates, the operator P transforms ϕ→ ϕ+ π
and θ → π − θ. Under a parity transformation,

PYlm (θ, ϕ) = Ylm (π − θ, ϕ+ π) = (−1)l Ylm (θ, ϕ) . (2.11)

Hence the spherical spinors are eigenfunctions of P having eigenvalues π = (−1)l. The two spinors
Ωk,m (θ, ϕ) and Ω−k,m (θ, ϕ), corresponding to the same value of j, have values of l differing by one
unit and, therefore, have opposite parity. Spherical spinors transform as

σ · r̂Ωk,m (θ, ϕ) = Ω−k,m (θ, ϕ) , (2.12)

under the operator σ · r̂, where r̂ = r/r.

Special cases and values of spherical harmonics are obtained in the following three points:

1. The case m = 0 reduces these functions to ordinary Legendre polynomials

Y 0
l (θ, ϕ) =

√
2l + 1

4π
Pl (cos θ) .
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2. When m = ±l,

Y ±l
l (θ, ϕ) =

(∓1)l

2ll!

√
(2l + 1)!

4π

(
sinl θ

)
e±ilϕ

3. At the north pole where θ = 0 and ϕ is undefined, all spherical harmonics for which m ̸= 0
vanish, and we have

Y m
l (0, ϕ) = Y m

l (z) =

√
2l + 1

4π
δm0.

Thus, these cases show that a list of analytic expressions of spherical harmonics can be readily
generated (at least for the first few terms) using a corresponding counter-list of the associated
Legendre polynomials, a task, however, we will not undertake to establish in this so restricted arena.

Next, to write the functions gn,k (r) and fn,k (r) found in (2.5) , we first define a constant γ and a scale
radius ρ as follows:

γ ≡
√
k2 − Z2α2, ρ ≡ 2Cr with C =

√
µ2c4 − E2

~c
; (2.13)

here the quantity E is the energy given in (2.4) .

Where k = −n, which corresponds to the maximum possible j−value for a given n, then gn,k (r) and
fn,k (r) become

gn,−n (r) = A (n+ γ) ργe−ρ/2

fn,−n (r) = AZαργe−ρ/2, (2.14)

with A being a normalization constant which depends on the Gamma function:

A =
1√

2n (n+ γ)

√
C

γΓ (2γ)
. (2.15)

One must note that, in the limiting case where the negative energy part f (r) is such that f (r) ≪ g (r)
because of the factor Zα, the energy E and the radial decay constant C become, respectively

En,n−1/2 =
γ

n
µc2 =

√
1− Z2α2

n2
µc2 and C =

Zα

n

µc2

~c
. (2.16)

Generally, when k ̸= −n, gn,k (r) and fn,k (r) are expressed in terms of two generalized Laguerre
polynomials Lb

a:

gn,k (r) = Aργe−ρ/2

[
ZαρL2γ+1

n−|k|−1 (ρ) + (γ − k)
γµc2 − kE

~cC
L2γ−1

n−|k| (ρ)

]
fn,k (r) = Aργe−ρ/2

[
(γ − k) ρL2γ+1

n−|k|−1 (ρ) + Zα
γµc2 − kE

~cC
L2γ−1

n−|k| (ρ)

]
(2.17)

where A now assumes the form

A =
1√

2k (k − γ)

√√√√ C

n− |k|+ γ

(n− |k| − 1)!

Γ (n− |k|+ 2γ + 1)

1

2

[(
kE

γµc2

)2

+
kE

γµc2

]
. (2.18)

As we can see from the details above, where there still exist many left-outs, it is quite labourious, if
not somewhat cumbersome, to obtain the solutions of the relativistic Dirac-hydrogen-like equation and
wave functions in (2.5) in which the spherical harmonics constitute the main ingredient. This situation
could lead to difficulties in calculations and simulations problems with these wave functions. It is no
doubt that in many instances the spherical harmonics functions in (2.5) are regarded as rules, but not
as calculation or simulation objects, let alone transformation simulations of these kind of waves into
other type of waves, based on the above expressions.
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Fig. 1. Transformation from spherical waves into plane waves

3 STERN-GERLACH EXPERIMENT

OR TRANSFORMATION FROM

SPHERICAL WAVE EXPANSION

INTO HELICAL PLANE WAVE

FUNCTIONS

We leave the history and description of this
famous experiment to the references [16], and
lay our focus on its function, in order to
uncover the analytical transformation underlying
its phenomenon. A single beam of hydrogen-
like (silver) atoms in ground state is guided
through an applied transverse magnetic field and
experiences, at the exit of this field, a splitting
of its wave (which here is a spherical wave
expansion) into two, representing spin-up and

spin-down angular momenta, Fig.1.(a) and (c), as
scientific observation and analysis made it clear
and approved since 1922; and no other result has
ever since contradicted this scientific accurate
interpretation.

Firstly in the attempted interpretation , scientists
generally admit that, at the exit from the
magnetic field, the randomly oriented nuclear
magnetic moments (in the initial beam, Fig.1.(b)
) experience an external magnetic torque which
tends to align the individual magnetic moment
parallel or anti-parallel to the vertical z−direction
of the applied field, hence the two optional
orientations in spin-up and spin-down.

Secondly, it has been established that the
phenomenon of spin and magnetic moment are
non-intrinsic to the electron and do not depend
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on its internal structure. In particular, the spin
angular momentum, proportional to and co-linear
with the magnetic moment, is generated by
a circulating flow of energy, forming a helical
plane wave field (perpendicular to the direction of
propagation) which carries the electron (or atom);
likewise the magnetic moment is produced by a
circulating flow of charge in the wave field of the
electron [7] [8] (Section III).

Now, as the question is about magnetic torque
leading to electron spin ( i.e., mathematically,
rotation resulting in spin), we are reduced to
admit that the ground state atomic hydrogen-
like spherical waves have undergone a process

of spin transformations turning these waves
into helical plane waves. Here, the term
“spin transformations” is not a mere play on
words. They are mathematical entities which
have been derived in the context of determining
the relationship which links the physical (realistic)
process of three-dimensional spatial rotations
to the “non-realistic” subatomic phenomenon of
electron spin [12]; they are specifically rotation
matrices of angle 2nπ, with n = 1, 2, ...

We now call in the Dirac-hydrogen helical plane
wave function which has been obtained (in Paper
(II), Eq. (3.35), of this series) as

ψplane = N


(

1
0

)
cσzpz

mc2+Ep

(
1
0

)
 exp [i (pzz − Ept) /~] . (3.1)

Explicitly, in four dimensions [ i.e., (1-time, 3-space), using a 4 × 4 Lorentz rotation matrix ] together
with the spherical waves in equation (2.5) which we now denote by ψspherical, and considering waves
propagating in the z−direction with positive energy, we have

RSψspherical = ψplane, (3.2)

where RS is a 4× 4 spin transformation matrix about the z−axis. That is,


1 0 0 0
0 cos (2nπ) − sin (2nπ) 0
0 sin (2nπ) cos (2nπ) 0
0 0 0 1




gn,k (r) r
−1

√
k+ 1

2
−m

2k+1
Yk,m−1/2 (θ, ϕ)

−gn,k (r) r
−1sgn k

√
k+ 1

2
+m

2k+1
Yk,m+1/2 (θ, ϕ)

ifn,k (r) r
−1

√
−k+ 1

2
−m

−2k+1
Y−k,m−1/2 (θ, ϕ)

−ifn,k (r) r
−1sgn k

√
−k+ 1

2
−m

−2k+1
Y−k,m+1/2 (θ, ϕ)



= N


(

1
0

)
cσzpz

mc2+Ep

(
1
0

)
 exp [i (pzz − Ept) /~] . (3.3)

Coming to equation (3.3) , the expression at the r.h.s. includes only constant terms (except for the
time variable t), not forgetting that the expression of the energy Ep involves the constant radius r;
but the radial functions gn,k (r) and fn,k (r) are not constant. However, in the process of this spin
transformation, it will take some time t for the spherical waves to be completely stabilized into helical
plane waves; in this time interval, the radial functions become constant and identity functions of
argument r, i.e., gn,k (r) = fn,k (r) = r (the distance of the valence electron from the nucleus),
showing the reason why t appears at the r.h.s. of (3.3) but not at the l.h.s. We deduce that equation

7
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(3.3) is well-defined. Next, ∀n∈ N, i.e., n = 1, 2, ..., we have that cos (2nπ) = 1 and sin (2nπ) = 0. All
these observations put together reduce equation (3.3) to:

√
k+ 1

2
−m

2k+1
Yk,m−1/2 (θ, ϕ)√

k+ 1
2
+m

2k+1
Yk,m+1/2 (θ, ϕ)√

−k+ 1
2
−m

−2k+1
Y−k,m−1/2 (θ, ϕ)√

−k+ 1
2
−m

−2k+1
Y−k,m+1/2 (θ, ϕ)

 = N


(

1
0

)
cσzpz

mc2+Ep

(
1
0

)
 exp [i (pzz − Ept) /~] . (3.4)

Here, it should be observed that we have
restricted the demonstration to the transformation
from spherical waves into plane helical waves in
the spin-up upward z−direction. For the case of
spin-down, one uses the other unit component

spinor χ−1/2 =

(
0
1

)
at the right hand side

of (3.4).

Now, equation (3.4) holds iff the second
and fourth entries in the 4-vector to the left
are identically zero, since their corresponding
counterpart to the r.h.s. are. But since the
spherical harmonic functions do not vanish,
it follows that their coefficients (involving the
quantum numbers) must be invalidated, leading
to: k + m = −1/2 for the second entry and:
k +m = 1/2 for the fourth, that is, in a combined
form

|k +m| = 1

2
. (3.5)

Assuming the quantum numbers are given and
the terms involved in the expression of the
plane wave function are known, we could expect
equation (3.4) to have somewhat an equilibrium
solution. It follows that the type of spherical wave
functions which hold in the spin transformation
from spherical wave expansion into helical plane
wave functions in the SGE is the class of
those with quantum numbers l, k, and m
satisfying equation (3.5) ,and showing that spin
transformation from spherical wave expansion
into plane wave functions in the SGE is topical
experimentally as well as analytically. However,
at this stage, it seems somewhat cumbersome
if not impossible, as mentioned above, to
implement this observation in a simulation based
on the spherical harmonics parameters, a task
we will leave for future investigation.

4 CONCLUSION

One of the fundamental aspect to note about the
Stern-Gerlach experiment, which has escaped
scientific scrutiny so far, turns out to be the
identification of its seminal spin transformation
from ground state atomic spherical wave
expansion into helical plane wave functions
through a transversely applied magnetic field,
and the analytical computations which underlie it.
Of course, it is out of no pretentiousness to point
this out if we understand one of its application
could lead to a superluminal phenomenon
involving a hydrogen-like particle, a phenomenon
which is a measure of our net advance in science.
For example, this could provide a ground for the
understanding of the volatility of the hydrogen
atom in many scientific experiments. One now
only has to draw thereafter other essential
scientific applications for own field of interest.
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