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Abstract 

To sustain food security and crop condition monitoring, yield estimation must improve at local and global scales. 
The aim of this review was to give a background of satellite-based crop monitoring and crop yield estimation, 
including the use of crop models. Recently, most advances in remote sensing techniques, aimed at 
complimenting the traditional crop harvest surveys, have focused on high-production and information-rich areas. 
However, there is limited research in dynamic landscapes using these techniques at local scales in most Southern 
African countries. Models such as the Decision Support System Agro-Technology’s (DSSAT) CERES-model, 
and Agricultural Production Simulator (APSIM) have been used to simulate maize biophysical parameters and 
yield variability in a changing climate. Despite the successes, there is still need to consider yield prediction using 
simplified models that decision-makers can use to plan for food support and sales. The application of 
freely-available satellite data with focus on maize crop as a staple for Southern Africa, highlights some 
challenges such as heavy reliance on agro-meteorological estimations and regional estimations of crop yield. It 
also raises questions of predicting across large growing belts without consideration of diverse cropping patterns. 
Conversely, future opportunities in crop monitoring and yield estimation using remotely sensed-data still shed a 
light of hope. For instance, employing multi-model configurations or multi-model ensembles is one of the major 
missing gaps needing consideration by crop modeling research. Other simpler, but versatile opportunities are the 
use of crop –monitoring applications on smart phones by small holder farmers to provide phenological data to 
decision makers throughout a growing season.  

Keywords: crop condition monitoring; crop yield estimation; food security; remote sensing; vegetation indices 

1. Introduction 

Crop condition monitoring and yield estimations must continuously produce timely, and spatially dependable 
updates for decision support systems. However, exorbitant survey costs, and complexity of production systems 
often impede these. Meanwhile, millions are affected by severe food insecurity in the advent of projected 
extreme climatic events (Godfray et al., 2010; Hall et al., 2017; Allen et al., 2014; Wheeler & Von Braun, 2013; 
Knox et al., 2012; Leff et al., 2004). In this respect, crops such as rice, maize, and wheat, which constitute the 
world’s major sources of energy, now demand increased special attention (UN SDGs, 2015). Correspondingly, 
global, regional and local scale monitoring of condition and production of these crops is essential to ensure food 
security. This, in turn, has great potential of achieving and sustaining the sustainable development goal (SDG) 
number two of “Zero Hunger” (UN SDGs, 2015). 

Generally, agriculture accounts for the main source of livelihood, and is a key sector in economic development, 
especially in most developing nations. It is dominantly characterized by cultivation of maize, rice, soybeans, 
wheat, tubers and cotton. As the population in sub-Saharan Africa is projected to double by 2050, the status quo 
necessitates vigilance in managing water and land resources to meet heightening food production demands (Van 
Ittersum, 2016). Currently, water scarcity recorded in parts of Eastern and Southern Africa, following recurring 
droughts, due to El-Niño events, confirmed the need for effective resource management (Msowoya et al., 2016). 
Erratic rainfall prevailing in most production areas is increasing the hunger situation, especially in remote areas. 
These profound climatic impacts have a bearing on crop demand and supply, thereby requiring subtle monitoring 
and prediction systems. As unfavorable climatic events continue hampering agriculture, consistent crop 
monitoring and yield estimation will form an imperative basis of management and increased global resilience. 
With this information, relevant stakeholders can make timely and more accurate decisions during disasters and 
surplus production. These efforts are indispensable if the world is to overcome the eminent challenge of feeding 
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Table 1. Commonly used vegetation indices (VIs) in crop monitoring. Modified from Atzberger (2013) 

Index Formula Reference 

Normalized Difference Vegetation index NDVI (NIR – Red)/(NIR + Red) Rouse et al. (1974)  

Soil Adjusted Vegetation Index (SAVI) (1 + 0.5) × (NIR – Red)/(NIR + Red + 0.5) Huete (1988) 

Simple Ratio (SR) NIR/Red Jordan (1969) 

Renormalized Difference Vegetation Index (RDVI) (NIR – Red)/[sqrt(NIR + Red)] Roujean (1995) 

Enhanced Vegetation Index. (EVI) [2.5 × (NIR – Red)]/(1 + NIR + 6 × Red – 7.5 × Blue) Huete et al. (2002) 

 

Several other indices have been developed for monitoring vegetation and crop chlorophyll content and are 
presented in Table 2. These indices vary from each other depending on the spectral bands they use to monitor the 
crop phenology.  

 

Table 2. Vegetation indices summary 

Name Type Abbrev. Equation 

Ratio vegetation index (also called simple ratio) Red-NIR RVI Rn/Rr 

Normalized difference vegetation index Red-NIR NDVI (Rn – Rr)/(Rn + Rr) 

Soil adjusted vegetation index Red-NIR SAVI (1 + 0.5)(Rn – Rr)/(Rn + Rr + 0.5) 

Modified soil adjusted vegetation index Red-NIR MSAVI 0.5{2Rn + 1 – [ 2Rn + 1 2 – 8(Rn – Rr)]} 

Optimized soil adjusted vegetation index Red-NIR OSAVI (1 + 0.16)(Rn – Rr)/(Rn + Rr + 0.16) 

Enhanced vegetation index Vis-NIR EVI 2.5(Rn – Rr)/(Rn + 6Rr – 7.5Rb + 1) 

Triangular vegetation index Vis-NIR TVI 0.5[120(Rn – Rg) – 200(Rr – Rg)] 

Second modified triangular vegetation index Vis-NIR MTVI2 1.5[2.5(Rn – Rg) – 2.5(Rr – Rg)]/ [ 2Rn + 1 2 – 6Rn – 5 (Rr) – 0.5]

Chlorophyll vegetation index Vis-NIR CVI Rn·Rr/Rg
2 

Green normalized difference vegetation index Green-NIR gNDVI (Rn – Rg)/(Rn + Rg) 

Chlorophyll index-green Green-NIR CI-G Rn/Rg – 1 

Normalized green red difference index Vis NGRDI (Rg – Rr)/(Rg + Rr) 

Green leaf index Vis GLI (2Rg – Rr – Rb)/(2Rg + Rr + Rb) 

Visible atmospherically resistant index Vis VARI (Rg – Rr)/(Rg + Rr – Rb) 

Normalized difference red edge index RE-NIR NDREI (Rn – Rre)/(Rn + Rre) 

Chlorophyll index-red edge RE-NIR CI-RE Rn/Rre – 1 

MERIS total chlorophyll index RE-NIR MTCI (R750 – R710)/( R710 – R680) 

Modified chlorophyll absorption reflectance index Red-RE MCARI [(R700 – R670) – 0.2(R700 – R550)](R700/R670) 

Transformed chlorophyll absorption reflectance index Red-RE TCARI 3[(R700 – R670) – 0.2(R700 – R550)](R700/R670) 

Triangular chlorophyll index Red-RE TCI 1.2(R700 – R550) – 1.5(R670 – R550) (R
700

/R
670

) 

Combined index with TCARI Red-RE-NIR  TCARI/OSAVI 

Combined index with MCARI Vis-RE-NIR  MCARI/MTVI2 

Triangular greenness index Vis TGI -0.5[(λr – λb)(Rr – Rg) – (λr – λg)(Rr – Rb)] 

Source: Hunt et al. (2013). 

 

In a separate review on methods of estimating biomass and yield using low-resolution satellite data, Rembold et 
al. (2013) highlighted three main aspects, being that; 

Several indices to estimate leaf chlorophyll content exist (Hunt et al., 2013). The trade-off on which index to 
employ is also driven by the type of imagery available for a given study area and period. For instance, Sentinel 2 
has the red edge bands which Landsat 8 does not, yet Landsat 8 is likely to cover more of a particular area.  

Crop residues after senescence can quantify biomass using the characteristic lignin and cellulose reflectance at 
2.0-2.2 μm. 

Vegetation index derived LAI and fPAR are important in biomass and yield estimations. NDVI, SAVI, EVI from 
MODIS, SPOT-Vegetation and PROBA-V data using artificial neural networks and other computational 
techniques are among the frequently used biophysical parameters for yield estimation studies. 
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Crop canopies provide vital indicators in crop biomass accumulation and stress responses based on their spectral 
reflectance usually in the red and infrared bands. This is because healthy plants absorb the blue and red, and 
reflect the green of the optical spectrum, while they reflect infrared radiation. Therefore, NDVI reflects the 
photosynthetic activity of crops and shows the biomass conditions and stress of photosynthetically active crops 
(Liu, 2010). For estimating crop yields, Atzberger (2013) recommended that crop-specific masks be employed to 
eliminate analysis of other crops within observation area. Generally, this entails developing updated country or 
county crop masks of specific crops. With the advancement in technology and availability of satellite data, this 
should not be a hurdle in most cases. On the other hand, rigorous crop classification to identify the crops before 
analysis is an essential pre-requisite together with the crop masks.  

2.2 Crop Yield Estimations 

Satellite-based crop yield predictions employ similar approaches centered on spectral signatures and the 
estimated yields can be as reliable as actual yields. However, unprecedented (over or under-estimated) results 
obtained exist, and these can sometimes be alluded to edaphic and climatic conditions prevailing after the 
prediction. Particularly, paucity of data on actual yields in some areas can amplify the discrepancy between 
estimated and actual yields. Nonetheless, studies have shown success in maize yield predictions under varying 
environments (Zhang et al., 2016; Vergara-Díaz et al., 2016; Ban et al., 2016).  

2.2.1 Machine Learning and Big Data in Crop Yield Estimations 

Machine learning processes that capture information about a crop and deduce yields using various algorithms 
have proved to be a useful tool in predicting yields. However, these technologies need more scaling up on the 
continents if they are to provide meaningful contribution to crop yield estimations. You et al. (2017) using 
MODIS satellite data, applied deep learning techniques to train the data, and applied a Gaussian algorithm to 
obtain more smoothed results. Yield for the counties studied were accurately estimated thereafter. Machine 
learning’s ability to handle simple and complex relations between variables presents itself as a powerful tool for 
processing big data (Biffis & Chavez, 2017). In related instances, other studies have employed satellite data with 
convolutional, and or artificial neural networks to monitor crop condition and estimate yields (Fieuzal et al., 
2017; Ali et al., 2017; Saeed et al., 2017).  

Scaling up such studies to regional areas can increase challenges of processing and storage of remote sensing 
data. Hats off to Google for the creation of Google earth engine (GEE), that allows performance of tasks 
involving several terabytes of data in a cloud platform. Google earth engine is a robust planetary-based platform, 
which successfully allows researchers and other stakeholders to perform numerous tasks without worrying about 
story space and preprocessing time. Gorelick et al. (2017) powerfully demonstrate the usefulness of GEE as a 
planetary-based platform for analyzing satellite imagery for several purposes including mapping vegetation 
conditions. Similarly, using GEE, Jain et al. (2017) proposed a newly developed scalable crop yield mapper. 
Interesting findings about corn yield variability were revealed in the corn belt of the USA through this platform. 
However, like all new algorithms, there is still room for improvement, especially in areas such as space provided 
per given user, user inability to influence a query once it is processing in the background, and the scaling 
challenge, which limits the configuration of huge machines using the platform. 

2.2.2 Satellite-Derived Data Assimilation in Crop Models 

Crop growth models are known to differ from applicability, development, purpose and robustness, though they 
generally fall under three main types; Remote sensing forecast, Crop simulation and Statistical models, which 
are built on the utilization of information from remote sensing forecasts and simulation models. Water is the 
main sub-model driving the differences in yield in these models. Short-comings arising from the use of most of 
these models are their limitation to be scaled up at regional level as most have been developed and work well 
under field conditions. To address this, and ensure models offer sustainable technological transfer, models such 
as DayCent, GLAM, and PEGASUS have been developed to cater for large domains. However, these models are 
still not very widely adopted for further research and offering decision-makers support. DSSAT models are 
distinguished for being reasonably robust and easy to integrate diverse domains. 

As land use and climate change continue to affect the socio-economic status of people, it is timely to increase the 
incorporation of these factors in the crop models. Furthermore, synergistic efforts are needed amongst developers 
in order to create more dynamic, robust and acceptable models. The BioMA framework of the European Union 
offers an interesting platform for decision-makers, and scientists to alter model components, and even develop 
their own models to best suit their prevailing conditions. At a time when many models become obsolete because 
of lack of flexibility of changes, BioMA delivers a splendid way to deter such occurrences. 
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3. Challenges and Opportunities in Crop Monitoring 

3.1 Satellite Data, Yield Factors and Crop Monitoring Indices 

In vegetation studies, addressing challenges of pixel-based separation, crop identification, weed detection at 
early stage and cloud contamination differs according to nature of study, satellite data used and percent of 
accuracy required. For instance, Ma et al. (2013) reported the mixed-pixel effect while assimilating 
satellite-derived LAI into a crop model. This can complicate and reduce the accuracy of results especially in 
small study areas with heterogeneous vegetation. Using Fourier functions, the recalibration of the world food 
studies (WOFOST) model was performed which resulted in improved prediction results. Mostly, algorithms and 
digital filters such as the Savitzky-Golay (SG) have equally played incredible roles in smoothing data and 
reducing noise, common to satellite data. In the case of missing or cloud contaminated data, fusion of satellite 
data has proved to overcome this challenge. For instance, resampled high-resolution data to a much coarser 
resolution successfully estimated yields (Kumhálová & Matějková, 2017). This information is important and 
serves as a basis for future crop and yield monitoring especially in data-scarce areas. 

The unavailability of satellite data throughout the year on all the areas entails that other missions should be 
employed. The use of different satellite data to a small extent evokes the challenges of discrepancy in the spatial 
and temporal variability in the observed areas. For instance, the coverage for most of Sentinel 2 is low in the 
lower latitudes. The high swath of the satellite sensors compounds this challenge. However, this is a tradeoff 
from the manufacturer’s perspective. Limitations of the empirical approaches, which have been the basis for the 
simple crop yield estimation, decelerate the process of institutionalizing robust regional estimation. 
Consequently, new areas cannot easily be explored because extrapolation of such approaches is difficult. Efforts 
of minimizing these constraints, using crop models such as the ones based on the light-use and radiation-use 
efficiencies has provided some fresh light for further prospects (Lobell, 2013; Monteith & Moss, 1977; Monteith, 
1978). However, as far as crop yield forecasting at regional and local level is concerned, there is room to 
improve through the enhancement of data collection. There is still need to refine the spectral signatures for 
annual crops like cereals and pastures to improve yield predictions. Simultaneously, crop masks must be more 
updated and accurate to mask out the unwanted areas while preserving the area of interest. Similarly, 
incorporation of satellite-based biophysical parameters together with weather and climatic factors would better 
explain yield differences from a meteorological perspective. 

Factoring in other yield–reducing factors such as wild fires, pests and diseases would also help improve forecasts 
and crop damage assessment by insurers. While some studies have isolated the spectral differences due to pest 
damage, more work on other crops remains (Abdel-Rahman et al., 2017). This will establish further relationships 
making crop yield estimations more objective in relation to underlying factors. Following this, Tonnang et al’s 
(2017) recently well-tabulated holistic system of crop modeling will especially improve yield estimation in 
several aspects.  

Inception works on NDVI have remained a strong basis for monitoring crop condition. NDVI is said to have an 
almost linear relationship between the fraction of photosynthetically active radiation and LAI. However, 
Vancutsem et al. (2013) reported that MODIS NDVI time-series data synthesis posed challenges when 
harmonizing which were overcome by employing more accurate crop masks. NDVI’s saturating properties in 
dense canopies, or high biomass content has been reported and researchers are opting for combining it with 
indices that do not exhibit this characteristic, or altogether using other Vis such as EVI.  

3.2 Machine Learning and Crop Models 

As for machine learning, with on-going advances in computer technology, opportunities for further exploration 
of satellite data exist and require intricate investigation. Remarkably, the incorporation of ancillary data such as 
the local cropping calendar, calibrated and validated crop models for crop of interest will enrich the 
satellite-based inferences. Furthermore, there is need to harmonize both irrigated and rain-fed production, in 
estimation of phenological stages for the main energy crops. Clearly, remote sensing still has a greater role to 
play in agronomic, socio-economic and health of billions of people expected to survive under the scarcity of 
resources. As such, now is the best time to step up and refine the loopholes in promising methods. One place to 
start, following the availability of high-resolution data, is from previous models that performed well with coarse 
resolution data.  

Like Morell et al.’s (2016), questions about predictions of crop yield along an entire growing belt still arise. 
Unless and until, efforts to scale up every option that has shown potential, such questions will linger in our 
minds and those of generations to come. Relying on agro-meteorological and statistical methods on crop yield 
forecasting alone should not be the main method of crop yield estimation. However, largely, a further expansion 
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through local interactions by smart phone information provision by farmers to monitor cropping systems should 
be encouraged. Free pplications that capture crop type, planting dates, management practices, and phenological 
parameters can be installed in the smart phones for this purpose. This will help bridge the gap between some 
factors that influence yield estimation discrepancies, such intercropping, sowing dates, varieties, and weed or 
disease infestation. Additionally, it will also help whether to predict for an entire season or not, and for which 
crops (Li et al., 2015; Usaeed et al., 2017). Such aspects need to be agreed upon by experts. 

Di Paola et al., (2016) argued that models do not explicitly include the accuracies as pertains to structure and 
functionality, and do not include alternative parametizations. Additionally, Incorporation of climatic projections 
in models increases precision in planning for extreme events according to different climatic forcing. Greenhouse 
gas concentration and temperature rise affect crop production as they affect photosynthesis and respiration 
processes. Therefore, employing multi-model configurations or multi-model ensembles is one of the major 
missing gaps needing consideration by crop modeling research. 

Furthermore, researchers’ steady provision of spatially reliable and consistent yield estimations will improve 
service delivery and strengthen decision-making among policy makers. Going an extra mile to understand other 
available satellite products, drivers of spatial variability in crop responses will result in more holistic results. 
Synergistic multi-disciplinary efforts equally need to be upheld both at regional and local levels to develop 
consistent methods of yield estimation. Simple models based on satellite data that stakeholders can use for 
planning purposes are required for maize crop in Southern Africa. Further research on crop yield estimation 
using high resolution satellite imagery among small holder farmers will improve decision making, and service 
delivery. 
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Appendix A 

Table showing commonly used crop models in the last two decades. 

 

Table A1. Crop models summary (Modified from Delincé, 2017) 

Name 
Crop growth  
model type 

Sub-model 
Scale of 
Application 

Time step Crop addressed 
Examples of  
where applied 

Code/Software  
availability 

AgroMetShell Hybrid W 
Regional  

to Global  
(Ecosystems ) 

Decadal maize, millet, tef, beans, wheat, sorghum
Pakistan, Zambia,  
French 

Executable  

software for  

Windows with  
GUI (AO) 

APSIM 
Mechanistic  

(from CERES  
and ORYZA) 

W, N, C Field Daily 

barley, canola, canopy(intercropping),  

chickpea, cowpea, fababean, field pea,  

horse gram, lablab, lupins, maize, millet, 

mucuna, mungbean, oil palm, peanut,  

pigeon pea, plant, rice, slurp, sorghum,  
soybean, sugar, weed wheat, cotton 

Queensland,  

Netherlands,  

Zimbabwe,  
Australia(V13) 

Fortran C++,  
Linux Shell (AO) 

AquaCrop Empirical W Field Daily 
cotton, maize, potato, quinoa, 

 rice, soybean, sugar beet,  
sunflower, tomato and wheat 

Bushland, TX;  

Gainesville, FL; and  
Zaragoza, Spain (V17)  

Executable  

software for  

Windows with  
GUI (AO) 

CropSyst 
Mechanistic  
(from EPIC) 

W, N Field Daily 
corn, wheat, barley, soybean,  
sorghum, and lupins 

USA, Southern France,  

Italy, Syria, Spain,  
Australia(V37) 

C++, GUI available 
for windows (AO) 

DayCent Mechanistic W, N, C 
Regional  

to Global  
(Ecosystems ) 

Daily major crops Global (V41)  C++ (AR) 

DSSAT 

includes CERES,  

CROPGRO,  

CROPSIM,  

CABEGRO  
and others 

W, N, C Field Daily 

over 28 crops (Including: maize, wheat, 

soybean, peanut, rice, potato, tomato,  

drybean, sorghum, millet, pasture,  

chickpea, cowpea, velvetbean,  
brachiaria grass, and fababean) 

over 100 countries  
worldwide (V43) 

Fortran Software  
package (AO) 

FARMSIM* Empirical W, N, C, K Field Monthly 

maize, common beans, cassava, bananas, 

cotton, sorghum, bambara beans, sweet 

potatoes, coffee, finger millet, ground  

nuts, yams palms, pearl millet, cowpea, 
taro tea, soybean, potatoes, pigeon pea 

sub-Saharan Africa;  
Zimbabwe 

Microsoft® Excel  
using Simetar© (AO)

GLAM Hybrid W 
Regional 
to Global 

Daily groundnut, wheat and maize 
India, Africa,  
China(V51) 

Executable  
software (AR) 

InfoCrop 
Mechanistic  

(from SUCROS  
and ORYZA) 

W, N, C Field Daily 
annual cereals, legumes, oilseeds,  
potato and sugarcane 

India, Ludhiana,  
Africa (V62) 

Fortran,, GUI for  
windows (AO) 

JULES-crop 
Mechanistic  
(from SUCROS) 

W 
Regional  

to Global  
(Ecosystems ) 

Daily 12 CFTs Global (V63) FORTRAN 

LPJmL 
Mechanistic  
(from EPIC) 

W 
Regional  

to Global  
(Ecosystems ) 

Daily 13 CFTs Global (V67) C++ (AO) 

PEGASUS  Hybrid W 
Regional 

to Global 
(Ecosystems ) 

Daily maize, soybeans, spring wheat and others Global (V78) 
 

WOFOST 
Hybrid 
(from SUCROS) 

W Field/regional Daily 

annual field crop: winter wheat, spring  

barley, grain and green maize, potatoes, 

sugar beet, rapeseed, beans, soybean  
and rice 

Europe, Russia, Black  

Sea and CIS countries,  
China and India(V103) 

Fortran77,  

with a GUI for  
windows (AO) 
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