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Abstract

To sustain food security and crop condition monitoring, yield estimation must improve at local and global scales.
The aim of this review was to give a background of satellite-based crop monitoring and crop yield estimation,
including the use of crop models. Recently, most advances in remote sensing techniques, aimed at
complimenting the traditional crop harvest surveys, have focused on high-production and information-rich areas.
However, there is limited research in dynamic landscapes using these techniques at local scales in most Southern
African countries. Models such as the Decision Support System Agro-Technology’s (DSSAT) CERES-model,
and Agricultural Production Simulator (APSIM) have been used to simulate maize biophysical parameters and
yield variability in a changing climate. Despite the successes, there is still need to consider yield prediction using
simplified models that decision-makers can use to plan for food support and sales. The application of
freely-available satellite data with focus on maize crop as a staple for Southern Africa, highlights some
challenges such as heavy reliance on agro-meteorological estimations and regional estimations of crop yield. It
also raises questions of predicting across large growing belts without consideration of diverse cropping patterns.
Conversely, future opportunities in crop monitoring and yield estimation using remotely sensed-data still shed a
light of hope. For instance, employing multi-model configurations or multi-model ensembles is one of the major
missing gaps needing consideration by crop modeling research. Other simpler, but versatile opportunities are the
use of crop —monitoring applications on smart phones by small holder farmers to provide phenological data to
decision makers throughout a growing season.
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1. Introduction

Crop condition monitoring and yield estimations must continuously produce timely, and spatially dependable
updates for decision support systems. However, exorbitant survey costs, and complexity of production systems
often impede these. Meanwhile, millions are affected by severe food insecurity in the advent of projected
extreme climatic events (Godfray et al., 2010; Hall et al., 2017; Allen et al., 2014; Wheeler & Von Braun, 2013;
Knox et al., 2012; Leff et al., 2004). In this respect, crops such as rice, maize, and wheat, which constitute the
world’s major sources of energy, now demand increased special attention (UN SDGs, 2015). Correspondingly,
global, regional and local scale monitoring of condition and production of these crops is essential to ensure food
security. This, in turn, has great potential of achieving and sustaining the sustainable development goal (SDG)
number two of “Zero Hunger” (UN SDGs, 2015).

Generally, agriculture accounts for the main source of livelihood, and is a key sector in economic development,
especially in most developing nations. It is dominantly characterized by cultivation of maize, rice, soybeans,
wheat, tubers and cotton. As the population in sub-Saharan Africa is projected to double by 2050, the status quo
necessitates vigilance in managing water and land resources to meet heightening food production demands (Van
Ittersum, 2016). Currently, water scarcity recorded in parts of Eastern and Southern Africa, following recurring
droughts, due to El-Nifio events, confirmed the need for effective resource management (Msowoya et al., 2016).
Erratic rainfall prevailing in most production areas is increasing the hunger situation, especially in remote areas.
These profound climatic impacts have a bearing on crop demand and supply, thereby requiring subtle monitoring
and prediction systems. As unfavorable climatic events continue hampering agriculture, consistent crop
monitoring and yield estimation will form an imperative basis of management and increased global resilience.
With this information, relevant stakeholders can make timely and more accurate decisions during disasters and
surplus production. These efforts are indispensable if the world is to overcome the eminent challenge of feeding
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billions of people. According to Godfray et al. (2010), there will be more than 9 billion people across the world
by mid-century, and as such food production to meet their demands will require augmented efforts than ever
before.

Satellite-based remote sensing offers a unique and robust opportunity for crop monitoring and yield estimation,
which is more essential in data-scarce areas at dynamic scales (Srivastava et al., 2017). Since data collection in
large production areas is very costly, tedious, and time-consuming, the combined use of satellite imagery and
ground data collection to monitor crop condition, and subsequently predict yields, is not only convenient but also
economical. Fortunately, innovations of state-of-the-art satellite missions have taken an impressive turn over the
decades resulting in remarkable contributions to precision agriculture (Biffis & Chavez, 2017) and cross-cutting
sectors such as ecosystem services, health, soil mapping and socio-economic development (Bellora et al., 2017;
Erickson, 1984; Shepande, 2010; Ferencz et al., 2004). The results of these undertakings, such as soil mapping
and delineation of agroecological regions, are useful in decision-making and policy directions on resource
management (Chapoto et al., 2016; Burke & Lobell, 2017).

Steady provision of satellite imagery has seen an exponential rise in usage though there is a continuous trade-off
between high spatial and low temporal resolution data (Unganai & Kogan, 1998; Battude et al., 2016; Dong et al.,
2016; Wu et al., 2015, 2017; Senay et al., 2015). Often times, there is usually no getting the best of both worlds
as some high spatial resolution data has low temporal resolution and vice versa. Therefore, the onus of which
imagery to use is on the purpose of the study and availability of data for a given area of interest. For instance,
continued free accessibility of Landsat images over the decade has notably been a major driver of success in
monitoring crop conditions. Similarly, global coverage and availability of high resolution data continue to
influence the rate of its use in most studies, and satellite data present uniquque challenges and opportunities for
the future. This review aims at enlighting the information on use of satellite derived biophysical parameters in
crop monitoring and crop yield estimations with relations to crop models, with particular interest in Southern
Africa, where food insecurity is worsening in a changing climate.

2. Crop Monitoring and Crop Yield Estimation

The major staple crop in Southern Africa is maize, and is the main crop under this review. This work however,
also takes a glance at global successes in crop monitoring and crop yield estimation using satellite remote
sensing techniques, and then dives into specifics in Southern Africa. It stems from several online sources in form
of reports, reviews, communications, books, and research articles. Search engines were used to find this
information and the approach taken are summarized in Figure 1. The most prominent sources included, but not
limited to Elsevier, Google Scholar, Web of Knowledge, and Google Search using key words crop yield, crop
model, crop monitoring, maize, remote sensing, satellite, Southern Africa, vegetation indices, and Zambia.
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Figure 1. Flowchart of crop yield estimation based on satellite remote sensing approaches

Source: From the author.
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2.1 Crop Monitoring

Globally, the Land and Crop Inventory Experiment (LACIE) emerged as a successful pioneering effort in crop
condition monitoring (Erickson, 1984). With this foundation, several other attempts followed, leading to more
timely and improved crop condition and yield forecasting (Ferencz et al., 2004; Unganai & Kogan, 1998;
Battude et al., 2016; Dong et al., 2016). Currently, improved recent developments such as the Monitoring
Agricultural Resources (MARS) and CropWatch (Wu et al., 2015, 2017) continue to offer a huge contribution to
global and regional crop monitoring. The emphasis of monitoring is on European production for MARS, while
CropWatch has a more global coverage of more than 173 countries. Early warning systems such as the Global
Information Early Warning System (GIEWS) and Famine Early Warning System Network (FEWS NET),
similarly monitor short-term crop conditions using remote sensing and climatic data (Senay et al., 2017; Ross et
al., 2009). Like in other parts of the world, food security is a very topical issue in Africa. To address this issue,
FEWS NET (which employs satellite images) is currently one of the main crop forecasters per country on the
continent, and it provides a candid basis for decision-making. The guiding principle behind satellite imagery use
generally relates to the unique spectral signatures of things in the electromagnetic spectrum. The specific
reflectance of soil, water and vegetation, etc. allows information to be inferred and interpreted for crop mapping,
monitoring, yield estimation, water resources management, as illustrated in Figure 2. Crop condition mapping
and yield predictions, utilize information from the spectral response of specific crops.
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Figure 2. Scheme showing remote sensing applications in agriculture

Source: Guerschman et al. (2016).

2.1.1 Satellite-Derived Biophysical Parameters

Moderate-resolution Imaging Spectrometer (MODIS) products are one of the freely available datasets that
provide considerable advantage in crop monitoring studies (Ban et al., 2015; Ma et al., 2013; Zhang et al., 2015;
Kim et al., 2012; Liaqat et al., 2017). However, exact methods of crop condition and yield estimation vary from
study to study, and many indices have been proposed thus far (Table 1). Currently, there exists no consensus on
the best method to employ for each region, though some indices like the normalized difference vegetation index
(NDVI) frequently indicate crop condition. Leaf area index (LAI) is another useful biophysical parameter in
estimating yield. It is denoted as the area of one side of the green leaf as a ratio of the unit ground area covered
by the plant.
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Table 1. Commonly used vegetation indices (VIs) in crop monitoring. Modified from Atzberger (2013)

Index Formula Reference
Normalized Difference Vegetation index NDVI (NIR — Red)/(NIR + Red) Rouse et al. (1974)
Soil Adjusted Vegetation Index (SAVI) (1+0.5) x (NIR — Red)/(NIR + Red + 0.5) Huete (1988)
Simple Ratio (SR) NIR/Red Jordan (1969)
Renormalized Difference Vegetation Index (RDVI) (NIR — Red)/[sqrt(NIR + Red)] Roujean (1995)
Enhanced Vegetation Index. (EVI) [2.5 x (NIR — Red)]/(1 + NIR + 6 x Red — 7.5 x Blue) Huete et al. (2002)

Several other indices have been developed for monitoring vegetation and crop chlorophyll content and are
presented in Table 2. These indices vary from each other depending on the spectral bands they use to monitor the
crop phenology.

Table 2. Vegetation indices summary

Name Type Abbrev. Equation

Ratio vegetation index (also called simple ratio) Red-NIR RVI R,/R,

Normalized difference vegetation index Red-NIR NDVI (R,—R)/(R, +R,)

Soil adjusted vegetation index Red-NIR SAVI (1+0.5)(R,—R)/(R,+R,+0.5)

Modified soil adjusted vegetation index Red-NIR MSAVI  05{2R,+1- J[(ZRn +1)2-8(R, - R}
Optimized soil adjusted vegetation index Red-NIR OSAVI  (1+0.16)(R,—R)/(R, + R, +0.16)
Enhanced vegetation index Vis-NIR EVI 2.5(R,—R)/(R,+6R,—T.5R,+ 1)
Triangular vegetation index Vis-NIR TVI 0.5[120(R,, — Rg) — 200(R, — R,)]

Second modified triangular vegetation index Vis-NIR MTVIZ | 5[2.5(R, - R,) - 2.5(R, - Rg)]/\/[(ZR" +1)2-6R, - 5\/@ ~0.5]
Chlorophyll vegetation index Vis-NIR CVI R,,‘RJRg2

Green normalized difference vegetation index Green-NIR gNDVI (R, —R,)/(R,+ Ry)

Chlorophyll index-green Green-NIR CI-G R,/R,— 1

Normalized green red difference index Vis NGRDI  (R,—R)/(R,+R,)

Green leaf index Vis GLI (2Rg — R, — Rp)/(2R; + R, + Ry)

Visible atmospherically resistant index Vis VARI (Re—R,)/(Ry + R — Rp)

Normalized difference red edge index RE-NIR NDREI (R, —Ry)/(R,+ Ry)

Chlorophyll index-red edge RE-NIR CI-RE RJ/R,.—1

MERIS total chlorophyll index RE-NIR MTCI (R750 — R710)/( R710 — Res0)

Modified chlorophyll absorption reflectance index Red-RE MCARI  [(R700 — Re70) — 0.2(R700 — R550)1(R700/R670)
Transformed chlorophyll absorption reflectance index Red-RE TCARI 3[(R700 — Re70) — 0.2(R700 — Rs50)1(R700/Re70)
Triangular chlorophyll index Red-RE TCI 1.2(R700 — Rss0) — 1.5(Re70 — Rsso)y/ (R, /R.))
Combined index with TCARI Red-RE-NIR TCARI/OSAVI

Combined index with MCARI Vis-RE-NIR MCARI/MTVI2

Triangular greenness index Vis TGI -0.5[(A — )R, — Ry) — (Ar — Ag)(R, — Rp)]

Source: Hunt et al. (2013).

In a separate review on methods of estimating biomass and yield using low-resolution satellite data, Rembold et
al. (2013) highlighted three main aspects, being that;

Several indices to estimate leaf chlorophyll content exist (Hunt et al., 2013). The trade-off on which index to
employ is also driven by the type of imagery available for a given study area and period. For instance, Sentinel 2
has the red edge bands which Landsat 8 does not, yet Landsat 8 is likely to cover more of a particular area.

Crop residues after senescence can quantify biomass using the characteristic lignin and cellulose reflectance at
2.0-2.2 pm.

Vegetation index derived LAI and fPAR are important in biomass and yield estimations. NDVI, SAVI, EVI from
MODIS, SPOT-Vegetation and PROBA-V data using artificial neural networks and other computational
techniques are among the frequently used biophysical parameters for yield estimation studies.
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Crop canopies provide vital indicators in crop biomass accumulation and stress responses based on their spectral
reflectance usually in the red and infrared bands. This is because healthy plants absorb the blue and red, and
reflect the green of the optical spectrum, while they reflect infrared radiation. Therefore, NDVI reflects the
photosynthetic activity of crops and shows the biomass conditions and stress of photosynthetically active crops
(Liu, 2010). For estimating crop yields, Atzberger (2013) recommended that crop-specific masks be employed to
eliminate analysis of other crops within observation area. Generally, this entails developing updated country or
county crop masks of specific crops. With the advancement in technology and availability of satellite data, this
should not be a hurdle in most cases. On the other hand, rigorous crop classification to identify the crops before
analysis is an essential pre-requisite together with the crop masks.

2.2 Crop Yield Estimations

Satellite-based crop yield predictions employ similar approaches centered on spectral signatures and the
estimated yields can be as reliable as actual yields. However, unprecedented (over or under-estimated) results
obtained exist, and these can sometimes be alluded to edaphic and climatic conditions prevailing after the
prediction. Particularly, paucity of data on actual yields in some areas can amplify the discrepancy between
estimated and actual yields. Nonetheless, studies have shown success in maize yield predictions under varying
environments (Zhang et al., 2016; Vergara-Diaz et al., 2016; Ban et al., 2016).

2.2.1 Machine Learning and Big Data in Crop Yield Estimations

Machine learning processes that capture information about a crop and deduce yields using various algorithms
have proved to be a useful tool in predicting yields. However, these technologies need more scaling up on the
continents if they are to provide meaningful contribution to crop yield estimations. You et al. (2017) using
MODIS satellite data, applied deep learning techniques to train the data, and applied a Gaussian algorithm to
obtain more smoothed results. Yield for the counties studied were accurately estimated thereafter. Machine
learning’s ability to handle simple and complex relations between variables presents itself as a powerful tool for
processing big data (Biffis & Chavez, 2017). In related instances, other studies have employed satellite data with
convolutional, and or artificial neural networks to monitor crop condition and estimate yields (Fieuzal et al.,
2017; Ali et al., 2017; Saeed et al., 2017).

Scaling up such studies to regional areas can increase challenges of processing and storage of remote sensing
data. Hats off to Google for the creation of Google earth engine (GEE), that allows performance of tasks
involving several terabytes of data in a cloud platform. Google earth engine is a robust planectary-based platform,
which successfully allows researchers and other stakeholders to perform numerous tasks without worrying about
story space and preprocessing time. Gorelick et al. (2017) powerfully demonstrate the usefulness of GEE as a
planetary-based platform for analyzing satellite imagery for several purposes including mapping vegetation
conditions. Similarly, using GEE, Jain et al. (2017) proposed a newly developed scalable crop yield mapper.
Interesting findings about corn yield variability were revealed in the corn belt of the USA through this platform.
However, like all new algorithms, there is still room for improvement, especially in areas such as space provided
per given user, user inability to influence a query once it is processing in the background, and the scaling
challenge, which limits the configuration of huge machines using the platform.

2.2.2 Satellite-Derived Data Assimilation in Crop Models

Crop growth models are known to differ from applicability, development, purpose and robustness, though they
generally fall under three main types; Remote sensing forecast, Crop simulation and Statistical models, which
are built on the utilization of information from remote sensing forecasts and simulation models. Water is the
main sub-model driving the differences in yield in these models. Short-comings arising from the use of most of
these models are their limitation to be scaled up at regional level as most have been developed and work well
under field conditions. To address this, and ensure models offer sustainable technological transfer, models such
as DayCent, GLAM, and PEGASUS have been developed to cater for large domains. However, these models are
still not very widely adopted for further research and offering decision-makers support. DSSAT models are
distinguished for being reasonably robust and easy to integrate diverse domains.

As land use and climate change continue to affect the socio-economic status of people, it is timely to increase the
incorporation of these factors in the crop models. Furthermore, synergistic efforts are needed amongst developers
in order to create more dynamic, robust and acceptable models. The BioMA framework of the European Union
offers an interesting platform for decision-makers, and scientists to alter model components, and even develop
their own models to best suit their prevailing conditions. At a time when many models become obsolete because
of lack of flexibility of changes, BioMA delivers a splendid way to deter such occurrences.
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Jones et al. (2016) quite explicitly revealed that crop models offer a comparative advantage in estimating crop
yields and have various input requirements depending on their designs and purpose. According to Delincé’s
(Delincé, 2017) recent review of models in use for crop yield estimation, crop models vary in spatial and
temporal terms, as well as scientific use and are classified as such WOFOST, APSIM, CROPSYST, DSSAT,
STICS, EPIC, and ORYZA are among the widely used models in crop studies (Table A1) (Delincé, 2017).

The possibility of using remote sensing data in place of ground data makes most models more applicable for use
in data-scarce areas. For instance, Leaf Area Index (LAI) derived from satellite data has been assimilated in
studies as a forcing, or steering factor (Ma et al., 2013; Sun et al., 2017; Silvestro et al., 2017) (When assimilated
as a forcing factor, the derived parameter is used directly in the model. When steering on the other hand, a model
is re-parameterized and calibrated to reduce the difference between the model value and the satellite-derived
value).

Similarly, Li et al. (2017) using CERES Wheat model and GF-1 data estimated wheat yield at county scale. After
assimilating satellite-derived LAI using the particle filter method, more reliable yields were obtained compared
to the unassimilated estimates. Largely, this may always hold true depending on the accuracy of the derived LAI.
This is so because usually, cloud cover influences dependability of the optical satellite-derived data. In a related
study, in comparing results obtained from GF-1, Landsat 8, and Huanjing (HJ-1), Li et al. (2015) discovered a
strong correlation between the LAI and the Vis.

In a related study, Ban et al. (2016) while investigating corn in the USA, successfully predicted yield using a
phenology model and MODIS-derived LAI (Ban et al., 2016). However, in this method, problems of mixed-pixel
could arise, especially when very small arecas were under consideration. Another setback is the temporal
resolution of data and poor satellite coverage. Disruptions in the data availability of the satellite information
concerning the cropping period impose a marginal impact on the precision of yield estimation.

While crop yield estimation methods are not a ‘one-size-fits-all’, the underlying principles of vegetation
response to environmental and climatic conditions continue to drive all of them. Interestingly, Kuri et al. (2017)
reported that the estimation of crop yield should take an in-depth account of phenology per given area. Crop
phenology, can be related to decadal differences in weather parameters, using regression expressions (Figure 3).
Based on this, estimated yield can be well correlated to the prevailing conditions at the time of estimation (Kuri
et al., 2017). This has an advantage of highlighting some of the drivers to yield differences.
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Figure 3. Regression model comparison between number of dry dekads and yield at two critical stages based on
start of the season (SOS) in Zimbabwe

Source: Kuri et al. (2017).

Vegetation condition indices obtained using this method showed that reliable yield estimates can be obtained.
This is understood that actual yields recorded also need to be reliable as was the case in this study (Unganai &
Kogan, 1998). Before disputing or disregarding yield estimation, it is therefore, relevant for stakeholders to seek
to understand the estimation period. Steele-Dunne et al.’s (2017) synthesis of radar satellite use in agriculture
delivers a diverse range of scenarios in crop monitoring and arising challenges and opportunities Wéjtowicz et al.
(2016) in a review of remote sensing applications in agriculture present various indices and the applications for
which they were developed, enriching the already known and commonly used indices (Delincé, 2017).
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2.2.3 Exploration of Sentinel 2 and Gaofen 1 Satellite Data in Crop Monitoring and Yield Estimation

Among some recently launched state-of-the-art satellites are the Chinese Gaofen and the European Sentinel.
Studies using free datasets from these missions, though few, equally unveil exciting potential in crop condition
monitoring and crop yield estimations. The robustness of Sentinel 2 is embedded in its high spatial and temporal
resolution, 10 m, 20 m, 60 m and 12 days respectively. Similarly, Gaofen-1 (GF-1) boasts of 2 m, 8 m and 16 m
spatial resolution with a 10-day revisit period. Both Sentinel and Gaofen-1 are thrills in the developments of
satellite missions bent at improving resource management. The GF-1, like Sentinel-2 has optical, infrared,
thermal, and microwave sensors. Wei et al. (2017) reported successful application of G1-1 data in crop yield
estimation. In another study, Zheng et al. (2016), in estimating wheat yield of two sites (Figure 4), also used
high-resolution GF-1 data, which gave fairly good results.
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Figure 4. Measured and estimated yield for two sites (a) and (b)
Source: Zheng et al. (2016).

Having determined the above ground biomass relationship with the harvest index, yield was successfully
obtained. Furthermore, results showed that site (a) recorded a slightly better estimation of wheat yield, even
though their R? at 95% confidence level was not so different from each other.

In a similar study, Clevers (2017) while using Sentinel-2 10 m spatial resolution data, established developmental
parameters of a potato (Figure 5). This resolution was effective in isolating the LAI, leaf canopy content (LCC)
and leaf chlorophyll content (CCC). The weighted difference vegetation index (WDVI), in this study illustrated a
reliable relationship with LAI
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Figure 5. Relationships between (a) LAI and WDVI and estimated and (b) measured LAI for the potato plant

Source: Immitzer et al. (2016).
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However, in using Sentinel data, as for the bands 1, 9 and 11, studies indicated that there were unreliable for
monitoring vegetation condition. The short-wave-infra-red (SWIR), on the other hand, is a notably interesting
band to indicate water stress (Immitzer et al., 2016).

While Sentinel 2-A has demonstrated its usefulness in crop condition monitoring, blending it with synthetic
aperture radar (SAR) Sentinel 1-A revealed a much higher resolution LAI (Jain et al., 2017). This approach
poises Sentinel data as one of the existing dependable datasets to contribute to agronomic research, among other
uses.

The commonality in these approaches is that they do not have any standard procedure of determination, yet yield
meaningful results. This unique aspect presents satellite-based yield estimation as a dynamic and important
endeavor.

2.3 Southern Africa Case studies

While evidence suggests several crop monitoring and yield estimation studies in developed countries, only a few
have been fully documented. Presented herein are successes in sub-Saharan Africa with particular attention to
Southern Africa, where data scarcity in these areas exacerbates the digitization of the much needed production
information. The prominent feature of most crop production in the region is the tiny cultivated area
(Ntukamazina et al., 2017). Mapping crop types and yield in these areas has been very challenging. In the recent
past, increased satellite data available has allowed this hurdle to be overcome. For instance, Burke and Lobell
(Burke & Lobell, 2017), working with smallholders in Kenya provided a typical set-up of most subsistence
farmers in sub Saharan Africa. Citing droughts as one of the major disasters affecting maize yield in the region,
Kuri et al. (2017) revealed interesting findings of maize yield predictions based on dry dekads, which revealed
that dry dekads at vegetative stage could be more useful in early warning systems. While temperature and
rainfall are important variables affecting crop growth conditions and yield, nutrient variability and deficiency can
cause severe crop damage and yield losses in farming systems. Shoko and Mutanga (2016) indicated problems of
multi-collinearity springing from hyperspectral data in prediction of nutrient variability in C3 and C4 plants. The
high-resolution satellite data can also effectively map this variability (Figure 6). Maize is an important C4 plant
that is predominantly cultivated in southern Africa and where necessary, it can benefit from this knowledge.
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Figure 6. Overall accuracies obtained from resampled variables of Landsat 8, Sentinel 2 and Worldviewsensors
for (a) summer and (b) winter

Source: Shoko and Mutanga (2016).

Van Oort et al. (2015) using ORYZA2000 in yield gap analysis to test heat induced sterility in rice in Zambia
and seven other arid region countries established that it is well adapted to make estimations in arid regions.
Spatial and temporal yield gaps are common and increasingly high in the tropics and the lowest production areas.
The Global Yield Gap Atlas which covers about 43 countries including maize, rice and wheat producers, is a
reliable model in the region. While this model depicts the sensitivity of rice to climatic factors, its operational
requirements of at least 15-20 years’ precipitation data can be limiting in remote areas. Similarly, Chisanga et al.
(2015) showed that CERES maize models successfully predict maize yield under different climatic scenarios,
increasing understanding of variability under different forcing.
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3. Challenges and Opportunities in Crop Monitoring
3.1 Satellite Data, Yield Factors and Crop Monitoring Indices

In vegetation studies, addressing challenges of pixel-based separation, crop identification, weed detection at
carly stage and cloud contamination differs according to nature of study, satellite data used and percent of
accuracy required. For instance, Ma et al. (2013) reported the mixed-pixel effect while assimilating
satellite-derived LAI into a crop model. This can complicate and reduce the accuracy of results especially in
small study areas with heterogencous vegetation. Using Fourier functions, the recalibration of the world food
studies (WOFOST) model was performed which resulted in improved prediction results. Mostly, algorithms and
digital filters such as the Savitzky-Golay (SG) have equally played incredible roles in smoothing data and
reducing noise, common to satellite data. In the case of missing or cloud contaminated data, fusion of satellite
data has proved to overcome this challenge. For instance, resampled high-resolution data to a much coarser
resolution successfully estimated yields (Kumhalova & Matéjkova, 2017). This information is important and
serves as a basis for future crop and yield monitoring especially in data-scarce areas.

The unavailability of satellite data throughout the year on all the areas entails that other missions should be
employed. The use of different satellite data to a small extent evokes the challenges of discrepancy in the spatial
and temporal variability in the observed areas. For instance, the coverage for most of Sentinel 2 is low in the
lower latitudes. The high swath of the satellite sensors compounds this challenge. However, this is a tradeoff
from the manufacturer’s perspective. Limitations of the empirical approaches, which have been the basis for the
simple crop yield estimation, decelerate the process of institutionalizing robust regional estimation.
Consequently, new areas cannot easily be explored because extrapolation of such approaches is difficult. Efforts
of minimizing these constraints, using crop models such as the ones based on the light-use and radiation-use
efficiencies has provided some fresh light for further prospects (Lobell, 2013; Monteith & Moss, 1977; Monteith,
1978). However, as far as crop yield forecasting at regional and local level is concerned, there is room to
improve through the enhancement of data collection. There is still need to refine the spectral signatures for
annual crops like cereals and pastures to improve yield predictions. Simultaneously, crop masks must be more
updated and accurate to mask out the unwanted areas while preserving the area of interest. Similarly,
incorporation of satellite-based biophysical parameters together with weather and climatic factors would better
explain yield differences from a meteorological perspective.

Factoring in other yield—reducing factors such as wild fires, pests and diseases would also help improve forecasts
and crop damage assessment by insurers. While some studies have isolated the spectral differences due to pest
damage, more work on other crops remains (Abdel-Rahman et al., 2017). This will establish further relationships
making crop yield estimations more objective in relation to underlying factors. Following this, Tonnang et al’s
(2017) recently well-tabulated holistic system of crop modeling will especially improve yield estimation in
several aspects.

Inception works on NDVI have remained a strong basis for monitoring crop condition. NDVI is said to have an
almost linear relationship between the fraction of photosynthetically active radiation and LAI. However,
Vancutsem et al. (2013) reported that MODIS NDVI time-series data synthesis posed challenges when
harmonizing which were overcome by employing more accurate crop masks. NDVI’s saturating properties in
dense canopies, or high biomass content has been reported and researchers are opting for combining it with
indices that do not exhibit this characteristic, or altogether using other Vis such as EVI.

3.2 Machine Learning and Crop Models

As for machine learning, with on-going advances in computer technology, opportunities for further exploration
of satellite data exist and require intricate investigation. Remarkably, the incorporation of ancillary data such as
the local cropping calendar, calibrated and validated crop models for crop of interest will enrich the
satellite-based inferences. Furthermore, there is need to harmonize both irrigated and rain-fed production, in
estimation of phenological stages for the main energy crops. Clearly, remote sensing still has a greater role to
play in agronomic, socio-economic and health of billions of people expected to survive under the scarcity of
resources. As such, now is the best time to step up and refine the loopholes in promising methods. One place to
start, following the availability of high-resolution data, is from previous models that performed well with coarse
resolution data.

Like Morell et al.’s (2016), questions about predictions of crop yield along an entire growing belt still arise.
Unless and until, efforts to scale up every option that has shown potential, such questions will linger in our
minds and those of generations to come. Relying on agro-meteorological and statistical methods on crop yield
forecasting alone should not be the main method of crop yield estimation. However, largely, a further expansion
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through local interactions by smart phone information provision by farmers to monitor cropping systems should
be encouraged. Free pplications that capture crop type, planting dates, management practices, and phenological
parameters can be installed in the smart phones for this purpose. This will help bridge the gap between some
factors that influence yield estimation discrepancies, such intercropping, sowing dates, varieties, and weed or
disease infestation. Additionally, it will also help whether to predict for an entire season or not, and for which
crops (Li et al., 2015; Usaeed et al., 2017). Such aspects need to be agreed upon by experts.

Di Paola et al., (2016) argued that models do not explicitly include the accuracies as pertains to structure and
functionality, and do not include alternative parametizations. Additionally, Incorporation of climatic projections
in models increases precision in planning for extreme events according to different climatic forcing. Greenhouse
gas concentration and temperature rise affect crop production as they affect photosynthesis and respiration
processes. Therefore, employing multi-model configurations or multi-model ensembles is one of the major
missing gaps needing consideration by crop modeling research.

Furthermore, researchers’ steady provision of spatially reliable and consistent yield estimations will improve
service delivery and strengthen decision-making among policy makers. Going an extra mile to understand other
available satellite products, drivers of spatial variability in crop responses will result in more holistic results.
Synergistic multi-disciplinary efforts equally need to be upheld both at regional and local levels to develop
consistent methods of yield estimation. Simple models based on satellite data that stakeholders can use for
planning purposes are required for maize crop in Southern Africa. Further research on crop yield estimation
using high resolution satellite imagery among small holder farmers will improve decision making, and service
delivery.
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Appendix A

Table showing commonly used crop models in the last two decades.

Table Al. Crop models summary (Modified from Delincé, 2017)
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barley, canola, canopy(intercropping),
Mechanistic ;hickpea, colwgleal; f;aba_bean, f'%eld pe.?l, t gute:njlar;d, Fortan Coe
T ram. 1ns, maize, mi rland ran
APSIM (fom CERES ~ W,N,C  Field Daily U156 Srém, TaBIAD, TUPIS, maies, fileh, | EMCrHes, ortran =
4 ORYZA) mucuna, mungbean, oil palm, peanut, Zimbabwe, Linux Shell (AO)
an, .
pigeon pea, plant, rice, slurp, sorghum, Australia(V'?)
soybean, sugar, weed wheat, cotton
E: tabl
cotton, maize, potato, quinoa, Bushland, TX; chu 4 fe
sortware 1or
AquaCrop Empirical w Field Daily rice, soybean, sugar beet, Gainesville, FL; and Wind ith
indows wi
sunflower, tomato and wheat Zaragoza, Spain (V') GUI (A0)
USA, Southern F; 5 .
CropSyst Mechanistic W.N Field Dail corn, wheat, barley, soybean, Italy. S OL_I :rn . rance C++, GUI available
ropSys A ie ai A aly, 1a, Spain, .
oY (from EPIC) Y sorghum, and lupins Y yr 37p for windows (AO)
Australia(V™")
Regional
DayCent Mechanistic W,N, C to Global Daily major crops Global (V*") C++ (AR)
(Ecosystems )
includes CERES, over 28 crops (Including: maize, wheat,
CROPGRO, soybean, peanut, rice, potato, tomato, .
100 t Fortran Soft
DSSAT CROPSIM, W,N,C  Field Daily drybean, sorghum, millet, pasture, over [T countries ortran Software
5 worldwide (V43) package (AO)
CABEGRO chickpea, cowpea, velvetbean,
and others brachiaria grass, and fababean)
maize, common beans, cassava, bananas,
cotton, sorghum, bambara beans, sweet . .
b-Sah: Africa; M ft® Excel
FARMSIM* Empirical W,N,C,K Field Monthly  potatoes, coffee, finger millet, ground s1? anaran Alned; ?Cms‘_) xee
. Zimbabwe using Simetar© (AO)
nuts, yams palms, pearl millet, cowpea,
taro tea, soybean, potatoes, pigeon pea
. Regional . . India, Africa, Executable
GLAM Hybrid w Dail dnut, wheat and
yor to Global ay groundnut, wheat and maze China(V*") software (AR)
Mechanisti
InfoCrop ( fre;ina;:j Cl; 0S W.N.C Field Daily annual cereals, legumes, oilseeds, lnd%a, Lu(gliana, Fértran,, GUI for
potato and sugarcane Africa (V™) windows (AO)
and ORYZA)
Mechanisti Regional
echanistic
JULES- w to Global Dail 12 CFTs Global (V* FORTRAN
crop (from SUCROS) 0 Global aily s obal (V™)
(Ecosystems )
Mechanisti Regional
echanistic
LPJmL w to Global Daily 13 CFTs Global (V") C++ (AO)
(from EPIC)
(Ecosystems )
Regional
PEGASUS Hybrid w to Global Daily maize, soybeans, spring wheat and others ~ Global (V*)
(Ecosystems )
annual field crop: winter wheat, spring .
Hybrid barley, grain and green maize, potatoes. Europe, Russia, Black  Fortran77,
WOFOST (fy sucros) ¥ Field/regional Daily yl‘ag i g o "’b " Seaand CIS countries,  with a GUI for
rom sugar beet, rapeseed, beans, soybean . . .
& P Y China and India(V'”)  windows (AO)

and rice
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