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ABSTRACT

Globally wheat is most important crop and mostly grows in rainfed areas. In cereal crops, wheat
having highest protein content. In the abiotic stresses, mostly drought effects wheat productivity and
at growth stages. According to climate change, frequency of drought increases in arid and semi-arid
region because of water shortage. Drought effects all growth stages of wheat and more critical at
flowering and grain filling stage. Losses of wheat productivity depend on the severity and duration of
drought because of reducing in photosynthesis, stomata closure, metabolic activity decrease,
oxidative stress increase and result in poor grain formation ultimately yield loss. Easy method to get
yield from drought areas are to develop drought tolerance genotypes according to marks. Heritable
variation required for the improvement, but heritability is low because of the genotypic and
environmental interaction. Different genotypes of wheat behave different in drought. A
comprehensive study helps us understanding of some important markers. Breeders can select well
adaptive drought genotypes on the base of morphological markers (avoid leaf senescence, flag leaf,
root system, grain development, stay green character, cuticular wax and stomata conductance.),
physiological markers (abscisic acid (ABA), proline, chlorophyll content, jasmonic acid (JA) and cell
stability) and molecular markers (Dreb 1, Dreb 2, Rht 8, TaMYB33, TaRZF38 etc.). Several genes
which are doing job for drought stress tolerance and change the enzymes and proteins like, late
embryogenesis abundant, rubisco, responsive to abscisic acid, glutathione-S-transferase,
carbohydrates, helicase, and proline during drought stress. Drought stress alters some gene
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expression and cannot work properly due to the influence of environmental factors. Researchers
used biotechnological tools to identify the specific genes for drought tolerances. These markers help
us to identified drought tolerance genotypes for breeding program. This review paper covers
morphological, physiological and molecular marks for the development of drought tolerance

genotypes.
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1. INTRODUCTION

In cereal crops, wheat (Triticum aestivum, 2n=6x,
AABBDD) is staple food of more than 35% world
population [1]. Increase in population, bread
wheat becomes more significant for human [2].
Drought rapidly increases in wheat producing
rainfed areas like southern Australia, Africa, and
Mediterranean region [3]. Wheat is important
source of protein for human and having high
protein content as compare to rice, maize and
other cereal crops. Wheat has more than half
calories and almost half protein [4].

According to climate change, frequency of
meteorological events and causes gain the
attention of the world. The gap between food
production and demand are due to abiotic stress
like drought, high temperature, frost, etc. [5]. One
of most important abiotic stress is a drought
which cause by low rainfall and also effects
agricultural production. It defines as lack of
moisture in the soil which does not fulfill the
requirement of plant and disturb plant from
normal activities [6]. National science foundation
(NSF) reported that drought will be more in next
30 years and badly effect the crop yield by 6-12
bushel/acre [7]. Periodic drought effects more
than 50% of the area under wheat cultivation [8].
Drought stress reduces water potential of the
cell, turgor pressure, growth of plant and their
biomass. It is particular to occur in arid and semi-
arid areas. Drought mainly effects the rate of
photosynthesis, cell division, elongation, root
proliferation, disturb water and nutrients
relationship [9]. Reactive oxygen species (ROS)
produce as result of drought which effect the
cellular mechanism, enzyme inhibition, protein
degradation, effect on DNA and RNA at the end
cell death [1]. Drought also effects the
reproductive organs, grain filling stage, pollen
viability and seed development [10]. In recent
years, agricultural management practices like
irrigation and crop improvements play important
role in increasing grain yield [6]. Short duration
varieties develop for predictable rainfall areas. In
unpredictable rainfall environments transpiration
water left in soil at the time of maturity and yield

sacrificed [11]. For plant breeders, abiotic stress
tolerance is a big challenge because of high
genotype x environment interaction, low
heritability, and mutagenic nature of abiotic
stress responses [12].

Majority of breeding program has principal goal
for improvement of drought tolerance for a long
time [13]. Improvement occurs by empirical
breeding, in which yield was taken as a main
marker for selection in target environment [14].
Morphological, physiological and biochemical
markers offer for consideration as selection
criteria for screening drought tolerance in wheat
[15]. In wheat, major limiting factor is narrow
genetic variation in D-genome. Synthetic
hexaploid wheat (SHW) was produced artificially
to increase diversity in D-genome for drought
tolerance [2]. This review covers the most
beneficial morphological, physiological and
molecular markers, breeder can be used for
drought tolerance in wheat crop.

2. MORPHOLOGICAL MARKERS

Various morphological markers use for screening

of drought tolerance genotypes. Wheat
genotypes shows positive correlation in leaf area,
height and vyield [16]. Drought tolerance

genotypes produce more leaf area and total dry
matter in drought stress [17]. Breeder use
morphological markers i.e. leaf senescence [8],
flag leaf [18], stomata conductance [19], grain
development [20] and root system [21] as
selection criteria in drought tolerance genotypes.

2.1 Leaf Senescence

Leaf senescence is defined as change in leaf
color due to chlorophyll and membrane
breakdown. It effects the functions of leaf
because of water decrease with age [8].
Chlorosis is primary sign of leaf senescence. It is
due to decrease in photosynthesis [22]. Drought
during grain filling stage reduces the grain filling
period [23]. Early leaf senescence occurs due to
continuous water deficit condition [24]. Flag leaf
assimilates (30-50% of total) during grain




development in wheat. Leaf senescence
increase according to drought increase, drought
stress occurs at reproduction stage cause in
reduce grain yield [8]. Wheat genotypes produce
better yield that sustain leaf photosynthesis for
longer time [25].

2.2 Flag Leaf

In morphological markers, flag leaf effect plant
architecture and vyield potential in wheat. In
favorable condition flag leaf of some wheat
genotypes contributes 45-58% in photosynthesis
activity and after flowering 41-43% use in grain
filling [18]. During the reproductive stage, flag
leaf provides assimilates for plant growth,
development, spike development, drought
adaptation signal and photosynthesis [26]. Flag
leaf characteristics i.e. size, width, length, flag
leaf angle [27] are positively correlated with the
yield in cereal crops [28]. Wheat genotypes with
smaller and more erect flag leaves are able to
reduce water loss due to rolling their leaf in
drought and give high yield as compare to lax
leaf genotypes [18]. Characteristics and function
of flag leaf are closely related to grain filling in
wheat [19].

2.3 Stomata Conductance

In the initial of drought, stomatal conductance
reduced because of reduced photosynthesis. In
some conditions, non-stomatal and metabolic
inactivity cause increase in CO, and close
temporary stomata [8]. Drought at later stages
cause dehydration in tissue and effects the
metabolic activity [29]. Water loss effects the
photosynthesis, reduced turgor, stomatal
conductance, reduce growth, leaf water potential
and reduce yield. Stomata conductance which
can contribute to continued growth under water
stress use as identification in drought tolerance.
[30]. Leaf epidermal cells stomata uptake CO, in
photosynthesis and water loss with transpiration.
Mechanism of stomata opening and closing can
reduce the water loss and high photosynthetic
rate  maintain. Stomata density and size
determinates of water loss and growth [19].

2.4 Grain Development

In cereals grain development initiate with the
fertilization of egg to form zygote and one nuclei
form endosperm [31]. Photosynthesis occur in
leaves and store food in vegetative parts that
play important role in grain filling [20]. At young
microspore stage of pollen, drought creates
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sterility in pollen and reduces in grain number
[32]. In drought meiosis and anthesis are badly
affected at the end reduce grain yield [33]. Grain
number in wheat shows no effect of drought and
has effect on grain filling result in shorten the
grain filling stage [8].

2.5 Root System

For yield improvement, plant root systems gain
attention as morphological marker [21]. From
many years, breeding for high yield with high
input create narrow genetic germplasm and with
loss of well adaptive markers [34]. Root markers
are polygenic in nature that effect root function
and architecture [35]. Breeder continuous work
on identification of root makers that make plant to
adapt drought environment. Hydraulic
conductivity increases because of more root
depth and crop take water from depth at grain
filling stage [36], root length density, small root
diameter, and large specific root length play role
in drought tolerance [21] and angle between
seminal roots should be optimized [37].

2.6 Stay Green Character

It is defined as the ability of plant to remain
photosynthetically active due to delayed
senescence is called stay green character. Its
duration in flag leaf and harvesting index is
positively correlated with water use efficiency
during grain development. The genotypes which
sustain flag leaf photosynthesis produce more
yield as 30-50% photosynthates require during
grain filling [8]. [38] concluded correlation
analysis of different genetic traits in wheat with
grain yield and found highly significant correlation
between flag leaf area persistence and maintain
yield in droughts. [39] also concluded positive
correlation of green flag leaf with wheat yield.
Increase in grain filling and improvement of
desirable traits, at the end increase in grain yield
[40].

2.7 Cuticular Wax

Wheat leaves with glaucous characteristics are
coated with wax. Six genes controlling wax have
been reported and located on wheat
chromosomes W1 and IW1 on 2BS, W2 and IW2
on 2DS, W3 on 2BS, and IW3 on 1BS [41,42].
Leaf cuticular wax can protect the plants against
abiotic and biotic stresses [43]. Firstly, cuticular
wax observed in drought stress in plants, such as
tobacco, alfalfa, rice and wheat that play role in
drought tolerance and leaf water potential



decreased under drought tolerance, which is
essential to keep plants having relatively high
photosynthesis rate and relative high yield. Leaf
cuticular wax on wheat drought tolerance in an
attempt to develop drought resistance cultivar
[44].

3. PHYSIOLOGICAL MARKERS

In susceptible wheat genotypes yield contributing
markers and vyield reduction is observed. In
physiological markers and vyield have positive
relationship.  Physiological marks help in
understanding plant growth and product in
drought stress [45,46]. Drought tolerance
genotypes can be developed by using
physiological markers as selection criteria.
Researchers fined physiological markers i.e. high
chlorophyll content [16], high proline content [47],
cell membrane stability [48] and jasmonic acid
[49] that make plant mechanism to tolerant
drought stress [16].

3.1 Abscisic Acid (ABA)

In drought condition, Abscisic acid (ABA)
increases in plant. Drought tolerance genotypes
produce abscisic acid (ABA) that help in
adaptation of drought condition. ABA hormone
produce in many stresses and responses by
modification of protein synthesis [50,51,52,53].
Increase in relative water content due to increase
in ABA in drought condition [54]. Lower ABA
concentration in reproductive organs result in
higher grain yield and sign of drought tolerance.
An Ideal genotype has optimum root depth, water
transportation, low ABA and high stomatal
sensitivity [52]. Increase in activities of
antioxidant enzymes [55] e.g. peroxidase (POD)
and superoxide dismutase (SOD) due to
increase in ABA [56]. In drought condition, ABA
increase in flag leaf and also increase grain yield.
At booting stage, ABA in flag leaf significantly
increase and at anthesis stage ABA prominently
decrease [24].

3.2 Proline

Proline is a protein which produce in plants under
stress environment. Proline function in stress
environment e.g. redox potential in the cell,
destroying free radicals, osmotic adjustment and
stabilizing sub cellular structures. Proline does
not disturb the normal cell biochemical reactions
and support plant to survive in stress. In water
stress and salinity, proline concentration
increases in plant parts [47]. Proline produces in
plant body by glutamic acid pathway [57]. In

Igbal; AUBGE, 2(1): 1-13, 2019; Article no.AJBGE.46253

drought, wheat plant response rapidly and
produce more proline amount as compare to
other osmoregulators. Beneficial organic solutes
produce that prevent water loss. Proline also
protects the cell from ultraviolet radiation. It helps
us to understand the mechanism of drought
tolerance in wheat. It more produces in drought
condition to help plant to survive [58]. Proline
accumulation and drought tolerance shows
positive correlation with each other. Different
wheat genotypes have their own threshold level
in drought condition. Proline accumulation in
different wheat genotypes use as marker in
drought tolerant plant [59].

3.3 Chlorophyll Content

In drought condition chlorophyll content decrease
[60] and chlorophyll b reduce more as compare
to chlorophyll a. Drought tolerance genotypes
have high chlorophyll content in drought stress
[61]. Chlorophyll content uses as marker for
evaluation of germplasm. In drought chlorophyll
decrease and stomata’s effect. Chlorophyll and
higher carotenoids associated with chlorophyll
fluorescent in drought tolerance. Chlorophyll
efficiency of a plant with 4 carbons at
temperature 30 to 45°C and plants with 3
carbons at a temperature of 10 to 25°C has best
chlorophyll yield. When the leaf emergence until
its full growth, increases in photosynthetic growth
rate and then decrease gradually [62]. Active
oxygen species effect the chloroplast and result
in decrease in chlorophyll. Severe drought stops
the activity of photosynthesis at the end effect
the chlorophyll component, chlorophyll content
and photosynthetic apparatus [63]. Photo-
synthetic capacity is positively correlated with
leaf chlorophyll. Drought sensitive genotypes
rapidly decrease chlorophyll content. Tolerant
genotypes with  high  chlorophyll  content
considered as a favorable marker. Chlorophyll
content use as physiological marker for drought
tolerance in wheat [16].

3.4 Jasmonic Acid (JA)

Plants show different physiological and structural
modification in an environment [64]. JA helps in
the germination of dormant seeds [65]. JA founds
abundantly in the chloroplast [66]. Plant produce
variable and non-variable compounds that
consist on phytohormones to adapt a changing
environment [67]. Most important hormones and
jasmonic acids (JA) its methyl ester methyl
jasmonates (MeJAs), drive from fatty acid ([68].
JA is commonly found in plant kingdom [49].
Firstly, fungus Lasiodiplodia theobromae used for



isolation of JA [69]. JA plays role in
developmental, physiological activities, growth,
oxidative defense, reproductive processes, root
elongation, fruit ripening, sex determination,
fertility, biotic and abiotic stress tolerance [70]. It
involves in regulation of tolerance against
different environmental stresses [71].

3.5 Cell Membrane Stability (CMS)

In drought tolerance in wheat genotypes,
conductivity test and mitochondrial cell viability
use to measure cell membrane stability (CMS)
and reduction in tetrazoliumtriphenyl chloride test
(TTC) take considerable attention [48]. Cell
membrane disruption due to crowding of the
cellular components that may be due to decrease
cellular volume and at the end protein denatures
[72]. CMS use as indicators of drought tolerance
and cell membrane injury measure by electrolyte.
Drought tolerant genotypes show high cell
membrane stability then the susceptible
genotypes [16]. Cell membrane stability and
grain yield show the positive correlation in stress
condition. CMS measurement uses as selection
for drought tolerant genotypes [59].

4. MOLECULAR MARKS AND
QUANTITATIVE TRAIT LOCI (QTLs)

QTLs analysis through molecular makers
showed that chromosome 5B, 4B and 7B having

Igbal; AUBGE, 2(1): 1-13, 2019; Article no.AJBGE.46253

important genes for drought tolerance in wheat.
QTLs discovered on chromosome 5B placed
between two markers (M51P65 and Psr136)
have positive correlation with drought tolerance.
QTLs on chromosome 4B and 7B placed
between markers (M62P64d- Rht and M83P65d -
M21P76n) have negative effect on drought
tolerance [73]. On chromosome 4A have marker
(Xwmc89) showed important relationship with
drought tolerance [74].

Best method for the development of drought
tolerance is molecular mapping and marker
assisted selection. In some wheat genotypes,
amplified  fragment length  polymorphism
(AFLPs), restriction fragment length
polymorphism (RFLPs), microsatellites (SSRs),
SNPs, RAPDs and simple sequences repeat
(SSR) markers used for mapping of senescence
of flag leaf shown in Table 1. QTLs mapping
detected gene on chromosome 2D having better
performance in drought [75]. Milad in 2011 [76]
Identified RAPD and ISSR makers associated
with senescence of flag leaf in drought.

Molecular markers are best techniques for
breeder. RAPD shows rapidly result but limitation
is low reproducibility. In their opposite ISSR
markers are more reproducible and highly
informative. ISSR markers used in cereals for
genetic diversity, gene mapping, phylogenetic
relationship and DNA finger printing [77].

Table 1. Primers name and sequences of RAPD, ISSR and microsatellite primers used for PCR

Markers Primer names Primer sequences (5’ to 3’) References
RAPD OPE-26 5 AACGGTGACC & [77]

A-12 5 TCGGCGATAG 3

E-10 5 CACCAGGTGA 3

OPT-08 5 AACGGCGACA 3

OPC-19 5GTTGCCAGCC ¥

OPX-17 5 GACACGGACC ¥

A-02 5TGCCGAGCTG 3’ [78]

A-03 5AGGGGTCTTGY

A-04 5AATCGGGCTGY

A-08 5GTGACGTAGG3’

A-10 5GTGATCGCAGY

A-13 5 CAGCACCCACY

A-15 5TTCCGAACCC3

A-16 5AGCCAGCGAA3’

A-17 5GACCGCTTGTY

A-20 5GTTGCGATCCY

B-05 5TGCGCCCTTC¥

B-07 5GGTGACGCAG3’

B-10 5CTGCTGGGAC3’

B-17 5AGGGAACGAG3’

B-19 5 ACCCCCGAAG3’
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Markers Primer names Primer sequences (5’ to 3’) References
Pr, 5 CAGGCCCTTC3’ [79]
Prs 5’AGTCAGCCAC3’

Pry 5’AATCGGGCTG3
Prs 5AGGGGTCTTG3
Pre 5GGTCCCTGAC3
Pr; 5GAAACGGGTGY
Prg 5GTGACGTAGG3’
Prg 5GGGTAACGCCY
Prio 5GTGATCGCAG3
Pry 5’ CAATCGCCGT3
Pry, 5TCGGCGATAG3
Pry; 5’'CAGCACCCACY
Pri4 5TCTGTGCTGGY
Prys 5TTCCGAACCC3
Prie 5’AGCCAGCGAA3’
Prq7 5GACCGCTTGT3
Pryg 5’ CAAACGTCGG3
Prag 5GTTGCGATCC3
OPA02 5TGCCGAGCTG3’
OPAO7 5’GAAACGGGTGY
OPB09 5TGGGGGACTC3
OPB13 5TTCCCCCGCTY
OPCO04 5’CCGCATCTACY
OPC15 5’GACGGATCAG3’
OPE20 5AACGGTGACC3
OPF15 5’CCAGTACTCC3

ISSR M-1 5 (AC)8CG 3 [77]
UBC-811 5 (GA)8C3
UBC-817 5 (CA)8AJ
UBC 814-32 5(CT)7CCTA 3
AD1 5’(GA)9C3 [79]
AD2 5(AGC)6G3
AD3 5’(ACC)6G3’

AD5 5’(CA)10C%
AD6 5GT(CAC)73
AD9 5 (AC)9G3
M-1 5’(AC)8CG3’
M-6 5’(CAC)53’
M-7 5’(CAG)53’
M-8 5(GTG)53
SSR-1 5(GA)8TJ
ISSR-3 5(CT)8A3
ISSR-4 5(CT)8G3’
ISSR-5 5’(TC)8A3’
ISSR-808 5A(GA)7GC3’
ISSR-811 5G(AG)7AC3’
ISSR-816 5'C(AC)7AT3’

Microsatellite Xgwm 186 5'GCAGAGCCTGGTTCAAAAAG3’ [80]
Xgwm 337 5’CCTCTTCCTCCCTCACTTAGCS [81]
Xwmc 89 5’ATGTCCACGTGCTAGGGAGGTA3’ [82]
Xgwm 108 5’ CGACAATGGGGTCTTAGCAT3 [83]

Abiotic stress

elements i.e. Dehydration responsive element
binding (DREB). Dreb 1 genes are placed on 3A,
3B and 3D chromosomes in wheat.

induced through

Due to

transcription  mapping, Dreb B1
Xmwg818 and Xfbb117 on the 3BL chromosome.
Dreb B1 gene is responsible for drought, salinity,
heat tolerance in wheat. Dreb1/Dreb2 genes

gene placed between



isolated from Triticum aestivum, Oryza sativa,
Zea mays and perennial ryegrass [84]. Wheat
reactive oxygen

gene TaMYB33, detoxified
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geneTaMYB2 conferred drought tolerance [86].
Wheat expansis protein (EXPB) play important
role in cell wall extension during growth.

species (ROS), tolerance against salt and Expression of TaEXPB23 gene response to
drought stresses [85]. Another wheat water stresses [87]. Reduced height genes (Rht)
Table 2. Genes play vital role in drought tolerance in wheat
Sr. no Genes References
1 Dreb 1 [86]
2 Dreb 2 [86]
3 Rht 8 [88]
4 TaMYB33 [85]
5 TaRZF38 [90]
6 TaRZF70 [90]
7 TaRZF74 [90]
8 TaRZF59 [90]
9 TaVP3 [56]
10 TaVP2 [56]
11 TaVP1 [56]
12 TaEXPB23 [87]
13 TaMYB2 [86]
14 TaNAC2a [92]
15 TaMYB30-B [42]
16 R2R3- MYB [42]
17 TaWRKY19 [42]
18 TaWRKY2 [93]
19 TaSIP [93]
20 TaSRHP [93]
21 TaHPS [93]
22 TaASR1 [93]
23 TaNAC2a [94]
24 TaNAC13 [94]
25 TaNTL [94]
26 TaNAC7 [94]
27 TaNAC4a [94]
28 TaNAC6 [94]
29 TaWRKY10 [95]
30 TaWRKY1 [95]
31 TaWRKY33 [95]
32 TaWRKY93 [95]
33 TaWRKY44 [95]
34 TaRAP2.1 [95]
35 TAZFP34 [95]
36 TaERF1 [95]
37 TaERF3 [95]
38 Xcfd22-7B [96]
39 Xcfa2114-6A [96]
40 Xgwm181-3B [96]
41 Xwmc405-7B [96]
42 Xgwm148-3B [96]
43 Xwmc166-7B [96]
44 TaSnRK2.7-a [42]
45 TaSnRK2.7-b [42]
46 TaSnRK2.7-c [42]
47 TaSnRK2.7-d [42]
48 TaSnRK2.7-e [42]




in wheat that makes short stature. Dwarfing
genes Rht- B1b, Rht-D1b and Rht8 are identified
and have positive correlated with drought
tolerance in wheat [88].

Vacuolar H+translocating pyrophosphatase (V-
PPase) is an enzyme that have an important role
in development of plant and tolerant to abiotic
resistant and wheat V-PPase genes, TaVP3,
TaVP2, and TaVP1 play role in drought tolerance
[89]. [87] develop a transgenic tobacco having
gene TaEXPB23 that showed water retention
ability (WRA). TaEXPB23 gene may be used in
wheat genotypes to develope water retention
ability (WRA) for drought tolerance in wheat.
Kam in 2007 [90] discovered responsible genes.
TaRZF38 and TaRZF70 RING-H2 that up
regulated in leaf and down regulated in roots,
TaRZF74 and TaRZF59 were expressed in
embryo and endosperm at the highest level in
wheat during water stress. Myeloblastosis
oncogenes (MYB) play important role in growth,
development and response to stress. TaMYB30
and TaMYB30-B genes discovered that encoded
for R2R3-type MYB protein [91]. Sucrose non-
fermenting protein kinases 2 (SnRK2) show
signaling in stress plant. TaSnRK2.8 is a
regulatory factor providing strength to plasma
membrane stability. Drought, salt, cold tolerance
produces in transgenic Arabidopsis due to
Overexpression of TaSnRK2.8 shown in Table 2.

5. CONCLUSION

In the abiotic stresses, drought is major
environment stress that effects the wheat
productivity worldwide. Crop stage, intensity and
duration of drought determine the effect on grain
yield. Drought effects the wheat plant during any
stage of wheat but most devastating during
reproductive and grain filling stage. Significant
variation occurs in the wheat genotypes for
drought. Drought stress can be minimized by
drought tolerant genotypes and evaluating
through  morphological, physiological and
molecular marks. Our knowledge of drought
tolerance mechanism has been enhanced and
focus on the morphological, physiological and
molecular markers use for drought tolerance and
it have significant effect on yield. Breeder can
evaluate germplasm by using morphological,
physiological and molecular markers for drought
tolerance. Researchers trying physiological and
molecular marks for improvement in genotypes
against drought. To search allelic location for
drought resistant and their introgression into high
yield genotypes through mendelian genetics and
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present day biotechnological methodologies may
enhance the tolerance against drought. New
development techniques in sequencing, marker
development, and genome analysis give the
opportunity to identify the specific drought
tolerances gene in genome. Morphological and
physiological markers are cheapest and rapidly
evaluate drought tolerance response then
molecular markers.
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