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Abstract 
 

The aim of this work is to carry out detailed sensitivity analysis of each parameter in order to know their 
relative importance in the epidemiological model. This mathematical model for hepatitis B virus is a 
system of non-linear differential equations which represents the interaction between diseases classes and 
other epidemiological parameters. The disease free equilibrium points and basic reproduction number of 

the cases were analyzed using the next generation matrix method.  Sensitivity analysis of 0R with respect 

to the model parameters was carried out using normalized forward sensitivity index with graphical 

illustrations for clarity on the effects of these parameters. This analysis showed transmission rate   as the 

most sensitive parameter which means a reduction to zero of the transmission rate could lead to 
eradicating HBV infection. It was deduced that sensitivity analysis of these model parameters gives an 
insight into how best the spread of Hepatitis B Virus could be curtailed. 
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1 Introduction 
 
Hepatitis B is a potentially life-threatening liver infection caused by the HBV and is a major global health 
problem and the most serious type of viral hepatitis [1]. It has caused epidemics in parts of Asia and Africa 
[2]. Worldwide, about 2 billion people have been infected with the virus and about 360 million live with 
chronic infection. With this information, it is important to study ways by which this real world problem can 
be solved using mathematical modeling. 
 
Mathematical modeling of infectious diseases is a tool which had been used to study the mechanisms by 
which diseases spread, to predict the future course of an outbreak and to evaluate strategies to control an 
epidemic [3,4]. Mathematical models can project how infectious diseases progress to show the likely 
outcome of an epidemic and help inform public health interventions. Models use some basic assumptions 
and mathematics to find parameters for various infectious diseases and use those parameters to calculate the 
effects of possible interventions like mass vaccination programmes [5,6]. 
 
Abdulrahaman [3] discussed the importance of sensitivity analysis of each parameter in a mathematical 
model. In their work, they used normalized forward sensitivity analysis to discover parameters that have 

high impact on the basic reproduction number 0R  of Hepatitis B model which must be targeted by 

intervention strategies. It is worthy to note that sensitivity Analysis of models in mathematical 
epidemiology aims to study the effect of each parameters of the model [7,8,9,10]. Helena [11] explained that 
sensitivity indices was used to measure the relative change in a variable when a parameter changes. They 

defined the reproductive number 0R , as the expected number of secondary cases that one infected individual 

would cause through the duration of the infectious period and also used the normalized forward sensitivity 

index to compute  the sensitivity indices of 0R . 

 
In this way, close collaborations between experimentalists/clinicians and mathematical 
epidemiologists have become an important instrument, leading to faster progress in our understanding 
of these infections. In view of this, a mathematical model for the transmission dynamics of Hepatitis B 
Virus is presented and the importance of the most sensitive parameter will be examined. 
 

2 Model Formulation 
 
A model equation for the transmission dynamics and characteristics of Hepatitis B virus infection was 
formulated using first order ordinary differential equation. The population was divided into seven 
compartment namely: Susceptible S(t) who are not yet infected but can be infected by hepatitis B virus 
through various mode of transmission, Latent L(t) denote part of the population who came in contact with 
the virus but have no serologic alteration in their blood (Incubation Phase), Acute A(t) infected population 
have asymptomatic cases of the infection and may become silent carriers of the virus and has the ability of 
spreading the infection to those in the susceptible class, Chronic infected C(t) population are known as 
asymptomatic carriers who develop significant and potentially fatal diseases, Treatment T(t) population 
denote detected cases of chronic HBV infection undergoing treatment [12]. Recovered R(t) population 
denote the number of individual that completely recovered from the disease through natural healing and 
treatment while V(t) is the compartment for individuals who have been vaccinated. Individual in this class 
have temporary immunity for a period of 25years and cannot be infected with HBV until the vaccine wane 
out. Let the total population at any time (t) be denoted by N(t). 
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The rate of transfer between the compartments consist of several epidemiological parameters which include 

recruitment by birth represented by  and   represents recruitment by immigration, proportion of birth 

without vaccination is denoted by  and )1(   represent birth successfully vaccinated.  denotes birth to 

carrier mothers i.e vertically infected birth rate,   represent the transmission rate, k shows the reduced 

transmission rate from chronic infectiousness to acute infection,   represent natural death rate for all 

compartments, 1  is the vaccination rate of susceptible population and 2  represents loss of immunity of 

the vaccinated class. The transmission dynamics of hepatitis B virus is presented in the flow chart of Fig. 
2.1, 
 

 
 

Fig. 2.1. Flow chart of hepatitis B model with infective migrant 
 

The rate at which latent class becomes infectious and progress to acute class is denoted  , 1i and 2i are 

proportion of immigrant with Acute and chronic HBV infection respectively, q is the proportion of Acute 
that fails to clear HBV infection and become chronic,   is the progression rate of Acute class,   represent 

HBV induced death rate and the rate of flow from chronic to treatment class is  ,   is the rate of 

progressing from treatment class to recovered class after HBV elimination while )1( q  represents 

proportion of Acute class who cleared the infection and progress to the recovered class. 
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Then, )1( C   show the new born who are unimmunized and become Susceptible, )1(    

represents successful immunization of new birth, C  measures the new birth who are born to carrier 

mothers and cannot be vaccinated.  
 
From Fig. 2.1, the system of equations modified which represents the transmission dynamics of hepatitis B 
with immigrant and treatment/detected class is presented thus:  
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Subject to initial conditions,  
 

.0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  VRTCALS  
 

The following assumptions were made: 
 

I. The Population is assumed not to be constant since birth, immigration and death occur in the 
population. 

II. The natural death of all classes is the same except for chronic class. 
III. The vaccinated individuals become temporary immune for a period of 25 years. 
IV. The recovered individuals become permanently immune to the disease for life. 
V. The chronic infected individual have a diseases induced death rate of  . 

VI. This model is assume to be homogeneous mixing of individuals in the population where all 
individuals have equal likelihood of getting infected if they come in contact with infectious 
individuals.  

 

Then, consider a scenario where no migrant is present in the population i.e ,0 in equation (1), then 

equation (2) is obtained,  
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With the initial conditions,  
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3 Methodology 
 
3.1 Positive invariant region 
 
Consider equation (2), it is important to show that all the state variable and parameters are non- negative 

with respect to time (t) such that 0t . The total population in each compartment of the model is denoted 

by N(t). Let   .
7)(),(),(),(),(),(),( tVtRtTtCtAtLtS  be any solution of equation (2), given by

)()()()()()()()( tRtVtTtCtAtLtStN  where 0,0,0,0,0,0,0  RVTCALS , 

then all feasible solutions are uniformly bounded in 7
 . To show that all feasible solutions are 

uniformly-bounded in a proper subset of  
7
 , then 

 

From equation (2), 
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Where 1C

 

is the constant of integration. At t  and applying theorems on differential inequalities then, 

the seven dimensional simplex is positively invariant with respect to equation (2), this means for starting 

point .
7x , the trajectories lie in . 

 

 








 



VRTCALSVRTCALSVRTCALS ,0,0,0,0,0,0,0/,,,,,, 7

  

 

This implies that the mathematical model is well posed and epidemiologically meaningful. 

 
 

3.2 Diseases-Free Equilibrium (DFE) 
 
The diseases free equilibrium ( 0E ) is a point at which the population is free from Hepatitis B Virus 

infection. Consider equation (2), the disease free equilibrium of model equation (2) was obtained by setting
 0 VRTCALS . At HBV-free equilibrium point there is no infection, then we set 

all state variables except susceptible and vaccinated to be zero [13,14]. Such that, 

0 RTCAL and 0SS   and 0VV 
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Then, ,0,, 00  RTCALVVSS
           

 
 equation (2) gives 
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substituting 0V  into 0S , then 
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Collect like terms,   
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Collect like term, hence, 
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Therefore, the disease free equilibrium 0E  of the working model is  
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3.3 Basic reproduction number 
 
In general, the basic reproduction number ( 0R ) of an infection, is the effective number of secondary 

infection caused by an infected individual during his/her period of infectiousness. This makes it an important 
measure of transmissibility of a disease. We use the next generation matrix operator technique for analyzing 
the reproduction number of Hepatitis B Virus model of equation (2). Consider the mathematical expression 
in equation (4), 
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iF is the rate of appearance of new HBV infection in the infected compartment, iV  is the transfer of 

individuals out of compartment I by all other means and 0E is the disease-free equilibrium. Therefore, the 

spectral radius of the next generation matrix is the basic reproduction number [13,15]. From equation (2), 
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Then, the Jacobian derivative of iF  is given as 
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The transfer of individual out of the compartment i  is given by 
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Therefore, the Jacobian derivative of iV  is       
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and then equation (5) implies 
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The basic reproduction number 0R   is the dominant eigenvalue of matrix 1FV , then 

 

 
))()(())((

00
0 













qkSS
R                          (6) 

 

From the above, the basic reproduction number 0R , is given by the largest eigenvalue of the working model 

[16]. If 10 R , then, on average, HBV infected individual produces less than one new infected individual 

over the course of its infectious period, and the disease cannot grow. Conversely, if 10 R , then HBV 

infected individual infects more than one person, and the disease invades the population. 
 

4 Results for Sensitivity Analysis 
 
The normalized forward sensitivity index of a variable with respect to a parameter is the ratio of the relative 
change in the variable to the relative change in the parameter [11]. Let   represent any of the thirteen non-

negative parameter  ,,,,,,,,,,,, 21 qk  that define the basic reproduction number of the 

model. 
 

    





















 kqS
R 10

0               

 

Where 
 
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



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








21

2
0 
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S              

 

Then, 
 

    






















 kq
R 1

21
2

2
0

 
 

If a small perturbation   is made to the parameter  , a corresponding change will occur in 0R   as 

0R , where 

 

    R-R 000   R






 0R

                                       (7) 

 

The normalized sensitivity index 


















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0

0

0

0

R

R

R

R

 
 

An approximation of the perturbed value of 0R  , in terms of the sensitivity index is given as

   



  00 R 1 








R               

 
The sensitivity indices are obtained by substituting values of each parameter from Table 1. 
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Table 1. Parameter values used for numerical simulation 
 

Parameter Value Source 

  0.8 [17] 

k  0-1, 0.16 [18] 

  0.0143 [17] 
  0.7 [17] 
  0-1 [19] 
  0.0121, 0.00693 [19] 
  0.002, 0.2% [19] 

1  0.3 [17] 

2  0.1 [19] 

  6/year, 0.0166 [17] 
q  0.855 [19] 

  4/year [17] 

q1  0.1-0.95, 0.115 [19] 

  9/years/0.025 Estimated 

  0.01 Estimated 

 

4.1 Index for parameter   
 

Solving for  , then  








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Where, 
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simplify the above and substituting parameters in Table 1, 
 

then,  1  
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4.2 Index for parameter  
 

The sensitivity index of   is 
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This implies 
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Substituting values for the parameters provided in Table 1, then  gives 
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Hence,  =0.001862. 

 

4.3 Index for parameters  
 

The sensitivity index is given as 
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Hence,  = 2936850  . 
 
Following the same procedure, the sensitivity index for other parameters of the model was obtained and 
presented in Table 2.  

 

Considering  in Table 2 its sensitivity index evaluated is 1  meaning that, increasing   by 10% 

increases 0R by 10% and vice-versa. On the contrary, the negative sign of sensitivity index of 0R  to the 

model parameters indicate that an increase in the value of each of the parameter in this case leads to a 

corresponding decrease in 0R  of the model and vice-versa. 

 
Note that the sensitivity index may be a complex expression, depending on different parameters of the 

system, but can also be a constant value, not depending on any parameter value in the case of . With 

sensitivity analysis, one can get insight on the appropriate intervention strategies to prevent and control the 
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spread of the disease described by model (2) [20]. Hence, a highly sensitive parameter should be carefully 
estimated, because a small variation in that parameter will lead to large quantitative changes. On the other 
hand, an insensitive parameter does not require as much effort to estimate, because a small variation in that 
parameter will not produce large changes to the quantity of interest. This results show that big changes in the 

parameter that affects the basic reproduction number produce significant changes in 0R , and consequently, 

in the behavior of the disease development.  
 

Table 2. Sensitivity indices of each parameter in the model 
 

Parameter Sensitivity index for parameter values 
  +1 
  9682270   

  8259040   

2  68447.0  
  5418560   
  

 29368.0  
  

 05014.0  

k  045998.0  
q  045998.0  

  0352760   

1  005000   

  00186.0  
  00003.0  

 
The model equation (2) is solved numerically using Runge-Kutta method of order 4, then the effect of 
varying transmission rate and vaccination rate was presented graphically 
 

 
 

Fig. 4.1. Hepatitis B virus dynamic model against time (t) 
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Fig. 4.2. Susceptible population with various transmission rate (  ) against time (t) 

 

 
 

Fig. 4.3. Latent population with various transmission rate (  ) against time (t) 

 



 
 
 

Akinboro et al.; ARJOM, 16(9): 47-66, 2020; Article no.ARJOM.60049 
 
 
 

61 
 
 

 
 

Fig. 4.4. Acute population with various rate (  ) against time (t) 

 

 
 

Fig. 4.5. Chronic population with various transmission transmission rate (  ) against time (t) 
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Fig. 4.6. Susceptible population against time (t) with various vaccination rate ( 1 ) 

 

 
 

Fig. 4.7. Acute population against time (t) with various vaccination rate ( 1 ) 
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Fig. 4.8. Chronic population against time (t) with various vaccination rate ( 1 ) 

 

 
 

Fig. 4.9. Population undergoing treatment against time (t) with various vaccination rate ( 1 ) 

 
Fig. 4.1 explains the behavior of each population compartment of equation (2) without intervention which 

implies T(t)=0, V(t)=0 and 01   within a period of 20 year. The figure shows a scenario where the entire 

population does not have any external forces for treatment or vaccination. It was observed that the 
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susceptible population decrease which also led to an increase in all other infected classes of HBV model due 
to high transmission coefficient. 
 

The effect of varying transmission rate,   on the susceptible population was presented in Fig. 4.2. It was 

observed that an increase in the transmission rate,
 
  of HBV infection led to a decline in the number of 

susceptible population which is as a result of the positive sensitivity indices of the 
 
, that gives rise to an 

increase in threshold parameter 0R . Figs. 4.3, 4.4 and 4.5 showed the effect of varying transmission rate   

of Hepatitis B model in equation (2) on the Latent, Acute and Chronic population against time (t) 

respectively. Higher transmission rate,   led to a higher number of infective compare to a lower 

transmission rate. It was observed that when the transmission rate   of HBV infection becomes very small, 

the susceptible population increases, the number of latent, acute and chronic individuals decreases and vice-

versa. However, it is difficult to control the transmission rate  . This result is supported by the claim of 

zou[19] that if the transmission coefficient   is sufficiently small then HBV could be eliminated. 

 

The effect of varying vaccination rate, 1  on the model can be observed in Fig. 4.6. Increasing 1  led to a 

decrease in susceptible population and this means a higher vaccination coverage from the graph. High 
vaccination coverage implies a lower number of susceptible prone to being infected since the susceptible 
individuals would be transferred out of the compartment due to temporary immunity derived from vaccines. 

However, it is pertinent to note that if vaccination rate 1 is large enough, then 0R  might be less than 1 

[19]. The effect of varying vaccination rate 1 on the model for acute and chronic population against time (t) 

was presented in Figs. 4.7 and 4.8. It was observed that an increase in vaccination parameter 1  reduced the 

Latent, Acute and the Chronic population since susceptible individuals who are vaccinated developed 

temporary immunity. [3]. From Fig. 4.9, it was observed that the vaccination rate, 1  has little or no       

effect on the treatment class since individual in this class are still undergoing treatment and cannot be 
vaccinated. 
 

5 Conclusion 
 
Detailed sensitivity analysis of parameters in the mathematical model for the dynamics of hepatitis B virus 

(HBV) transmission was analyzed and the basic reproduction number 0R was obtained. The analysis showed 

that all the parameters are sensitive to the transmission and prevalence of HBV either positively or 

negatively. The most sensitive is the transmission rate  . These sensitivity indices allowed us to determine 

the most influential parameters in controlling disease transmission and prevalence. For optimum diseases 
control, intervention strategies should target those parameters with high sensitivity indices.  
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