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Abstract 
 

In this paper, the unsteady MHD Couette flow through a porous medium of a viscous incompressible 
fluid bounded by two parallel porous plates under the influence of thermal radiation and chemical 
reaction is investigated. A uniform suction and injection are applied perpendicular to the plates while the 
fluid motion is subjected to the constant pressure gradient. The transformed conservation equations are 
solved analytically subject to physically appropriate boundary conditions by using the Eigenfunction 
expansion technique. The influence of some emerging non-dimensional parameters namely, pressure 
gradient, suction parameter, radiation parameter, and Hartman number are examined in detail. It is 
observed that the primary velocity is increased with increasing pressure gradient while the increase in 
radiation parameter leads to adecrease in the thermal profile of the flow. 
 

 
Keywords: Eigenfunction expansion technique; magnetohydrodynamics (MHD); constant pressure 

gradient; suction; hall current. 
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1 Introduction  
 
The dynamics of fluids through the porous channel have been a popular area of research regarding to 
numerous increasing applications in chemical, mechanical, and material process engineering. Examples of 
such fluid include clay coating, coal, oil slurries, shampoo, paints cosmetic products, grease, custard and 
physiological liquids (blood, bile, and synovial fluid). Over the years, considerable interest has been 
observed on the effect of MHD in viscous, incompressible, non-Newtonian fluid flow with heat transfer. 
These interests on non-Newtonian fluids are owed to its important applications in various branches of 
science, engineering and technology, particularly in chemical and nuclear industries, material processing, 
geophysics and bio-engineering. In view of these applications, an extensive range of mathematical models 
have been developed to simulate the diverse hydrodynamic behavior of these non-Newtonian fluids. 
However, different non-Newtonian fluid models have been presented by researchers and solved using 
various types of analytical and computational schemes. 
 

Sayed-Ahmed et al. [1] investigated time dependent pressure gradient effect on unsteady MHD Couette flow 
of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous 
plates with heat transfer under an exponential decaying pressure gradient. Olayiwola [2] investigated the 
modeling and simulation of combustion fronts in porous media. Jana et al. [3] examined Couette flow 
through a porous medium in a rotating system. In another related work, Seth et al. [4] studied the effects of 
rotation and magnetic field on unsteady Couette flow in a porous channel. Seth et al. [5] studied the unsteady 
hydromagnetic Couette flow within porous plates in a rotating system. Recently, Sharma and Yadav [6] 
considered Heat transfer through three dimensional Couette flow between a stationary porous plate bounded 
by porous medium and moving porous plates. Sharma et al. [7] investigated the steady laminar flow and heat 
transfer of a non-Newtonian fluid through a straight horizontal porous channel in the presence of a heat 
source. Olayiwola and Ayeni [8] examined a mathematical model and simulation of In-situ combustion in 
porous media. In another development, a mathematical model of solid fuel Arrhenius combustion in a fixed-
bed was analyzed by Olayiwola [9]. Bhattacharyya et al. [10] studied analytically the solution for 
magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass 
transfer. The unsteady boundary layer flow of a Casson fluid due to an impulsively started moving plate was 
considered by Mustafa et al. [11]. Recently, Mukhopadhyay et al. [12] investigated the steady boundary 
layer flow and heat transfer over a porous moving plate in the presence of thermal radiation. Makinde and 
Mhone [13] studied the heat transfer to MHD flow in a channel filled with a porous medium. Malapati and 
Polarapu [14] analyzed unsteady MHD free convective heat and mass transfer in a boundary layer flow past 
a vertical permeable plate with thermal radiation and chemical reaction. Chamkha and Ahmed [15] 
examined unsteady MHD heat and mass transfer by mixed convection flow in the forward stagnation region 
of a rotating sphere at different wall conditions. The effects of thermal radiation and magnetic field on 
unsteady mixed convection flow and heat transfer over a stretching in the presence of internal heat 
generation/absorption was studied by Elbashbeshy and Aldawody [16]. Talukdar [17] investigated the 
buoyancy and chemical reaction effects on MHD mixed convection heat and mass transfer in a porous 
medium with thermal radiation and ohmic heating. Mohammed et al. [18] analyzed radiation and mass 
transfer effects on MHD oscillatory flow in a channel filled with porous medium in the presence of chemical 
reaction.  
 

The aim of the research is to establish an analytical solution capable of describing the concentration, 
temperature and velocity in the process of MHD Couette flow through a parallel plate with constant pressure 
gradient. 
 

2 Mathematical Formulation 
 
Following Sayed-Ahmed et al. [1], the unsteady flow of a viscous, incompressible, non-conducting fluid 
through a channel with chemical reaction, thermal radiation, constant and variable pressure gradient in the 
presence of magnetic field is investigated. The flow is assumed to be laminar, incompressible and flows 
between two infinite horizontal plates located at y h  which extends from x    to  and from 

z    to . 
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The upper plate is suddenly set into motion and moves with a uniform velocity 0U  while the lower plate is 

kept stationary as shown in the diagram below. The upper plate is simultaneously subjected to a step change 

in temperature from 1T  to 2T . The upper and lower plates are kept at two constant temperatures 2T  and 1T  

respectively with 2 1T T . The fluid flows between the two plates under the influence of an exponential 

decaying with time pressure gradient in the x-direction which is a generalization of a constant pressure 

gradient. A uniform suction from above and injection from below with constant velocity 0 which are all 

applied at 0t  . The system is subjected to a uniform magnetic field 0B in the positive y-direction and is 

assumed undisturbed as the induced magnetic field is neglected by assuming a small magnetic Reynolds 
number. The Hall effect is taken into consideration and consequently a z-component of the velocity is 
expected to arise.  
 

 
 

Fig. 1. Schematic diagram of the problem 
 
Based on the above assumptions, 
 

wkjvuiv  0                     (1) 

 

Introducing a Chapman-Rubesin viscosity law, with 1w as shown in Olayiwola (2016) and using the 
condition at the lower plate, results in: 
 

1

1

T

Tc
                       (2) 

 

Where 1  is the Casson coefficient of viscosity. 

 
Thus, the two components of the governing momentum equation in thedimensional form are as follows: 
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The energy equation in dimensional form is given as  
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The concentration equation in dimensional form is given as:  
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Subject to the initial and boundary conditions; 
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Where   and  are respectively the density and apparent viscosity of the fluid,   is electric conductivity, 

 is Hall factor, Bi is ion slip parameter, 0Be B  is Hall parameter, c  and k  are the specific heat 

capacity and thermal conductivity of the fluid respectively. Where u  and w  are components of velocities 

along and perpendicular to the plate in x  and y directions respectively, T is the coefficient of volume 

expansion of the moving fluid, C is the coefficient of volumetric expansion with concentration, v is the 

kinematic viscosity, T  is the temperature of the fluid, C is the concentration of the fluid, 1C is the 

concentration at infinity, 1D the thermal diffusivity, 2D the chemical reaction rate constant, PC is the 

specific heat capacity at constant pressure. t  is the time, g  is the gravitational force, e is the magnetic 

permeability of the fluid, K  is the porous media permeability coefficient, q  is radiative heat flux, 0H  is 

the intensity of the magnetic field, 0 0eB H  is electromagnetic induction, 0  is yield stress,  is 

coefficient of volume expansion due to temperature and   is the mean radiation absorption coefficient. 

 

 
To write the governing dimensional equations (3)-(6) with their corresponding boundary conditions (7) in 
non-dimensional form, we use the following dimensionless variables: 
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and we obtain 
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Subject to the initial and boundary conditions 
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Where  
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3 Method of Solution 
 
3.1 Transformation 
 
Since the boundary conditions are from -1 to 1, we first transform the boundary conditions to 0 to 1 using the 
transformation: 
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Collecting like powers of S, we have for:

 

 
0 :S

 

     

 

20 0
0

0 0 0

4 Re Pr

17

,0 0, 0, 0, 1, 1

c
Ra

t z z

z t t

 


  

    
       





     



 
 
 

Anyanwu et al.; ARJOM, 16(9): 1-19, 2020; Article no.ARJOM.59961 
 
 
 

7 
 
 

     

 

2
0 0 0

02

0 0 0

4 Re

18

,0 0, 0, 0, 1, 1

D

c
T Kr

t Sc z z z

z t t

  


  

    
         






     
 

   

         

 

2
0 0

0 0

0 0 0

4 Re Re Re

19

,0 2 1 2 2 , 0, 0, 1, 0

w wc Ha Pc
w w

t z z

w z z z w t w t

   
    

    





       
 

   

     

 

2
0 0

0 0

0 0 0

4 Re Re Re

20

,0 0, 0, 0, 1, 1

u uc Ha Pc
u u

t z z

u z u t u t


   

         





     
 

1:S

   

     

2
0 0 01 1

0 1 0 0 0 1

0 0

1 1 1

1

2 4 Re Re Re

(21)

, 0 0, 0, 0, 1, 0

u e uu uc Ha Pc
u Bif u fw e u u

t z z z z

g h

u z u t u t




 

    
                




 


  

  

 

   

     

2 2

0 0 0 01 1
0

2
2 2 2

0 0 1

1 1 1

1

2 4 Re Pr 4 Re

(22)
Re

,0 0, 0, 0, 1, 0

u wc bc
e

t z y z z y y

bHa
u w Ra

z t t

  




  

          
                       



    




   



 



 
 
 

Anyanwu et al.; ARJOM, 16(9): 1-19, 2020; Article no.ARJOM.59961 
 
 
 

8 
 
 

   

     

2
0 01 1

0 0 1 0 0 0 1

1 1 1

1

2 4Re Re Re

(23)

,0 0, 0, 0, 1, 0

w ww wc Ha Pc
e w Bif w fu e w w

t z z z z

w z w t w t

 
    

               

  



 
  

     

2
0 01 1 1

0 12

1 1 1

1

2 4 Re

(24)

,0 0, 0, 0, 1, 0

D

c
e T Kr

t z Sc z z z z

z t t

   
 

  

     
             


  



 

 

3.2 Eigenfunction expansion technique 
 
Now, consider the problem (see Myint-U and Debnath, (1987)) 
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u x f x u t u L t


 

   
  


  



 

 

For the solution of problem (25), we assume a solution of the form 
 

 
1

( , ) ( ) sin 26n
n

n
u x t u t x

L





   

 

Where 
 

 
 

 

 

 

2 2

0

0

0

( ) 27

2
( ) ( , ) sin 28

2
( ) ( ) sin 29

n nt k t k t
L L

n n n

L

n

L

n

u t e F d b e

n
F t F x t xdx

L L

n
b t F x xdx

L L

 
  

 





      
                  










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Comparing equation (17) – (24) with the (25) we obtain the solutions to the velocity (primary and 
secondary), temperature, and concentration distributions as  
 

 0

0 1
1

(z, t) z 1 sin (30)q t

n

q e n z 






  
 

 

0 2(z, t) (z, t) (31)z v  
 

 

11

0 10
1

(z, ) (32)q t

n

w t q e Sinn z






 
 

 

     1112
0

1 11

, 1 33q t

n

q
u z t z e Sinn z

q







  
 

 

   1 5
1

(z, t) 34
n

u u t Sinn z




 
 

 

Where 

 

   

      

   

11 11 11

11 0011 11 11 11

011 11

5 16 27 4
111 11

28 1 4
1 1 11 11 0 0

29 1
1 11 11 0

26

1 1
( ) 1 1

1 1 1
1

1 1
1

q t q t q t

n

q q tq tq t q t q t q t

n n

q tq t q t

n

u t q e q P e te
q q

q q P e te e e e e
q q q q

q q e e e
q q q

q


  



 
   

 


 



   
        

   

 
       

 

 
    

 






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   

   
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5 1
1 1 11 11 2
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q t q t q t
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q t q t q t q t
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q e e e
q q q

q P e te e e
q q q
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q q q q


  



 
   

 

 
   

 

  
     

  
 
 
  

      
  

 
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  
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
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     1 6
1

, 35
n

z t u t Sinn z 




 
 

 

Where  
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q e q q e e
q q q
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q q q
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 
 

 
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 



   
          

   

 
    

 



 
   

 

 




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 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  
      

   


 

 

     1 7
1

, 36
n

w z t u t Sinn z
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
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Where 
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 
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1

q q tq t q t q t q t
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n
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q q
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q

 
    

 


 



    
         

   
 
 
  

    
  




 

 

     1 8
1

, 37
n

z t u t Sinn z 



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Therefore the solutions to the governing equations are given as: 
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4 Results and Discussion 
 
The system of partial differential equations describing unsteady couette flow of an electrically conducting 
incompressible fluid bounded by two parallel non conducting porous plates is solved analytically using 
eigenfunction expansion method. The analytical solutions of the governing equations are computed and 
presented graphically with the aid of a computer symbolic algebraic package MAPLE 17 for the values of 
the following parameters: 
 

2 2Re 1, 1, 0.1, Pr 0.71, 1, 0.5, 0.22,

1, 1, 0.1, 0.2, 1, 0, 0.01,

Gr 0.2, 0.2, 2

D

Ra S Ha Kr Sc

Bi Be a c P T Ec

Gr  

      

      

  

 

 
The Figs. 2-12 Explains the graphs of primary and secondary velocities, temperature and concentration 
against different dimensionless parameters. 
 

 
 

Fig. 2. Relationship between primary velocity and time for different values of re 
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Fig. 2 presents the graph of primary velocity with time for different values Reynolds number (Re). It is 
observed that primary velocity increases with time and also increases as Reynolds number increases. 
 

 
 

Fig. 3. Relationship between concentration and time for different values of Re 
 

Fig. 3 presents the graph of concentration profile with time t for different values of Reynolds number. It is 
observed that the concentration profile increases with time and also, increases as Reynolds number increases. 
 

 
 

Fig. 4. Relationship between primary velocity and time for different values of Ra 
 
Fig. 4 shows the influence of radiation on the primary velocity profile. It is evident that the primary velocity 
increases with time. Also, an increase in the radiation parameter is found to decelerate the primary velocity 
of the flow. 
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Fig. 5. Relationship between temperature and time for different values of Ra2 

 
Fig. 5 displays the effect of the thermal radiation parameter on the thermal profile of the flow with time t. It 
is observed that the flow field suffers a decrease in temperature as radiation parameter increases while as 
radiation parameter increases the temperature decreases with time t. 
 

 
 

Fig. 6. Relationship between concentration and time for different values of Ra2 

 
Fig. 6 depicts the graph of concentration with time t for different values of radiation parameter. It is evident 
that concentration increases with time and also increases as radiation increases. 
 
Fig. 7 illustrates the graph of temperature with time for different values of suction parameter. It is seen that 
temperature decreases with time and also decreases as suction parameter increases. 
 
Fig. 8 presents the effect of the suction parameter on concentration along distance y. It is observed that an 
increase in suction parameter leads to decrease in concentration while concentration is observed to increase 
along distance y. 
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Fig. 7. Relationship between temperature and time for different values of S 
 

 
 

Fig. 8. Relationship between concentration and distance for different values of S 
 

 
 

Fig. 9. Relationship between primary velocity and time for different values of   
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Fig. 9 shows the influence of pressure gradient on the primary velocity with time. It is observed that an 
increase in pressure gradient leads to an increase in primary velocity. Also, primary velocity is found to 
increase with time. 
 

 
 

Fig. 10. Relationship between secondary velocity and time for different values of   
 
Fig. 10 shows the effect of pressure gradient on secondary velocity with time t. It is observed that increase in 
pressure gradient leads to decrease in secondary velocity of the fluid while the secondary velocity is 
observed to decrease with time t. 
 

 
 

Fig. 11. Relationship between secondary velocity and time for different values of Ha2 

 
Fig. 11 presents the graph of secondary velocity with time t for different values of Hartman number. It is 
observed that increase in Hartman number leads to decrease in secondary velocity. This is due to the 
retarding Lorentz force which acts in opposite direction of the fluid flow when magnetic field is applied. 
This type of resisting force, slows down the velocity as shown in the figure. 
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Fig. 12. Relationship between temperature and time for different values of Ha2 
 
Fig. 12 shows the effect of Hartman number with time t on the temperature profile. It is observed that 
increase in Hartman number leads to a decrease in temperature. Also, the temperature profile is observed to 
decrease with time. 
 

5 Conclusion 
 
For constant pressure gradient, the unsteady MHD Couette flow through a porous medium of a viscous 
incompressible fluid bounded by two parallel porous plates under the influence of thermal radiation and 
chemical reaction is investigated. A uniform suction and injection are applied perpendicular to the plate. The 
transformed conservation equations are solved analytically subject to physically appropriate boundary 
conditions by using the Eigenfunction expansion technique. From the results obtained, we can conclude that: 
 

1. The Increase in Hartman number leads to decrease in velocity. This is due to the retarding Lorentz 
force which acts in opposite direction of the fluid flow when magnetic field is applied. 

2. Concentration profile increases with time and also, increases as Reynolds number increases. 
3. The increase in the radiation parameter is found to decelerate the velocity of the flow. 
4. The flow field suffers a decrease in temperature as the radiation parameter increases while as radiation 

parameter the temperature profile is observed to decreases with time t. 
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