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Abstract

One of the most interesting areas of research that has attracted the attention of many scholars
are theory of zero divisor graphs. Most recent research have focused on properties of zero divisor
graphs with little attention given on the automorphsisms, despite the fact that automorphisms
are useful in interpreting the symmetries of algebraic structure. Let R be a commutative unital
finite rings and Z(R) be its set of zero divisors. In this study, the automorphisms zero divisor
graphs of such rings in which the product of any three zero divisor is zero has been determined.
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1 Introduction

The classification of automorphisms of graphs would have been exhausted if it was possible to find
necessary and sufficient conditions to determine the full automorphism group. The classification is
still open even though it has been done for some families of graphs. Graphs and graph automorphisms
are two important structures studied in mathematics. Interestingly the theory of graphs and
graph automorphisms are deeply connected. For instance, Evariste Galois characterized the general
quintic univariate polynomial f over rationals by showing that the root of such polynomial cannot
be expressed interms of radicals via automorphisms of structures of the splitting fields of f . A
little account on automorphisms can be mentioned. Ojiema et’al [1] did considerable work on
automorphisms unit groups of square radical completely primary finite rings. The research on
automorphisms of zero divisor graphs of Galois rings was extensively done by Lao eta’l [2] while
Ojiema et’al [3] characterized automorphisms of unit groups of power four radical zero finite
commutative completely primary rings. Other modes of structural classifications of automorphisms
can also be mentioned. The research on automorphisms of zero divisor graphs of square radical
zero commutative finite ring was carried out by [4] where detail studies of structures and order
formulae for automorphisms was invigorated setting stage for classification of automorphisms of
rings of characteristics greater than 2.

One of the most interesting and extensively studies was to determine when two graphs are isomorphic.
The completely primary finite rings having 3-nilpotent radical of Jacobson have been widely studied
(see for example [[5], [6], [7], [8], [9]]) under various conditions based on some well chosen invariants.
For instance in Chikunji [5], the study determined the automorphisms of such rings of characteristic
p given s, t, λ as invariants and h as the dimension of the submodules of the maximal Galois subring
R0. For the automorphisms of some classes of rings with characteristics p2, p3, reference can be
made to [10]. The studies mentioned however, concentrated on the automorphisms of the the classes
of the rings, leaving out the automorphisms of the graphs of the rings. Other modes of structural
classification of the cube radical zero completely primary finite rings have been advanced in [9]
among others. In fact, by construction, Chikunji in [9], considered the parameters t and s to be

related by t ≤ s(s+1)
2

. It is well known that in such rings, an element is either a zero divisor or
a unit. However, from the available literature on the determination and characterization of units
groups of these rings, the following cases have been considered:

(i) s = 2, t = 1, λ = 0, charR = p, p2 or p3

(ii) s = 2, t = 1, λ ≥ 1, charR = p, p2 or p3

(iii) s = 2, t = 2, λ = 0, charR = p, p2 or p3

(iv) s = 3, t = 1, λ ≥ 1, charR = p

(v) t ≤ s(s+1)
2

, λ = 0, charR = p, p2 or p3

(vi) t ≤ s(s+1)
2

, λ ≥ 1, charR = p, p2 or p3.

Let R0 = GR(pnr, pn) be Galois ring of order pnr and characteristic pn. Suppose U, V and W
are R0- modules generated by s, t and λ elements respectively. Consider the sets of commuting
indeterminates {u1, u2, · · · , us}, {v1, v2, · · · , vt} and {w1, w2, · · · , wλ} to be the generators of U, V
and W respectively so that R = R0 ⊕ U ⊕ V ⊕ W is an additive abelian group. Depending on
the characteristic of R0, we define suitable multiplication that turns R into a commutative ring wit
identity and proceed to characterize the automorphisms of zero divisor graphs of a ring R, for the
cases where s = 2, t = 1, λ = 0 since such rings have been constructed for all the characteristics.
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2 Construction of Cube Radical Zero Finite Rings of
Characteristic p

The following construction can be obtained from [9].

Let R0 = GF (pr) be a Galois field. Suppose {u1, u2} and {v} are generating sets for R0- modules
U and V respectively, so thatR = R0 ⊕R0u1 ⊕R0u2 ⊕R0v is an additive abelian group . On this
group define multiplication as follows:

(a0, a1, a2, a3)(b0, b1, b2, b3) = (a0b0, a0b1+a1b0, a0b2+a2b0, a0b3+a3b0+a1b1+a1b2+a2b1+a2b2).
It is well known that this multiplication turns R into a commutative ring with identity (1, 0, 0, 0).

Proposition 2.1. Let R be a ring of the above Construction. The set of zero divisors Z(R) satisfies
the following:

(i) Z(R) = R0u1 ⊕R0u2 ⊕R0v.
(ii) (Z(R))2 = R0v.
(iii) (Z(R))3 = (0).

Proof. That the characteristic of R is p follows from the fact that charR=charR0. We want to
show that any element not in R0u1 ⊕ R0u2 ⊕ R0v is a unit. Let a0 ̸= 0, We determine the
inverse of (a0, a1, a2, a3), say (b0, b1, b2, b3). From the multiplication in R, we need that a0b0 = 1,
a0b1 + a1b0 = 0,and a0b2 + a2b0 = 0, a0b3 + a3b0 + a1b1 + a1b2 + a2b1 + a2b2 = 0 which implies that
b0 = a0

−1,a0b1 = −a1b0 = −a1a0
−1 ⇒ b1 = −a1a0

−2, b2 = −a2a0
−2 and b3 = −a3a0

−2−a1
2a0

−3−
a1a2a0

−3−a2a1a0
−3−a2

2a0
−3. Therefore (a0, a1, a2, a3)

−1 = (a0
−1,−a1a0

−2,−a1a0
−2,−a3a0

−2−
a1

2a0
−3 − a1a2a0

−3 − a2a1a0
−3 − a2

2a0
−3.)

Properties (ii) and (iii) easily follows from the given multiplication.

Some properties of the zero divisor graphs of R are given in the next proposition

Proposition 2.2. Let R be a ring of the construction given in this section. Then
(i) |V (Γ(R))| = p3r − 1
(ii) Γ(R) is incomplete
(iii) diam(Γ(R)) = 2

Proof. (i) Since char = p, pu1 = pu2 = pv = 0. So |R0u1| = |R0u2| = |R0v| = pr. Therefore
|Z(R)| = p3r while |Z(R)∗| = p3r − 1 = |V (Γ(R))|.
(ii) Follows from the fact that (Z(R))2 ̸= 0
(iii) Since Ann(Z(R)) = (Z(R))2 and Γ(R) is incomplete, there exist non adjacent x, y ∈ V (Γ(R))
so that for some z ∈ Ann(Z(R)), x− z − y is the longest path in the graph

The following result summarizes the structure of the automorphisms of the zero divisor graph of
the ring constructed in this section.

Proposition 2.3. Let R = R0u1 ⊕R0u2 ⊕R0v be a ring constructed in this section. Then
Aut(Γ(R0u1 ⊕R0u2 ⊕R0v)) ∼= Sp3r−p2r × Sp2r−1

Proof. Let ξ1, · · · , ξr ∈ R0 with ξ1 = 1 such that ξ̄1, · · · , ξ̄r ∈ R0 form a basis for R0 over its prime
subfield. It suffices to partition Z(R)∗ into mutually disjoint sets each of whose members have
the same degree. Since |Z(R)| = p3r and |Z(R)∗| = p3r − 1, each nonzero element of Ann(Z(R))
is of degree p3r − 2. Let a, b, c ∈ R0. Then, Z(R) = {aξiu1 + bξiu2 + cξiv | a, b, c ∈ R0} and,
Ann(Z(R)) = {aξiu1 + bξiu2 + cξiv | a+ b ≡ 0(mod p)}.
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Now, in ann(Z(R)), |{(a, b) : a, b ∈ R0}| = pr while ann(Z(R)), |{(a, b, c) : a, b, c ∈ R0}| = p2r.
So, |Ann(Z(R)) \ {0}| = p2r − 1. Thus any Z(R)∗ such that x /∈ R is of degree p2r − 1 since
every such x is only adjacent to an element in Ann(Z(R)) \ {0}. On the other hand, each element
y ∈ Ann(Z(R)) \ {0} is adjacent to Z(R)∗ ∋ x /∈ Ann(Z(R)). So the degree of y is p3r − 2. Now,
let V1 = {x | Z(R)∗ ∋ x /∈ Ann(Z(R))} and V2 = {y | y ∈ Ann(Z(R)) \ {0}}. Then |V2| = p2r − 1
and |V1| = p3r − 1 − (p2r − 1) = p3r − p2r. Since V1 and V2 are mutually disjoint partitions, the
automorphism group permutes V1 and V2 independently, we obtain Aut(Γ(R0u1 ⊕R0u2 ⊕R0v)) ∼=
Sp3r−p2r × Sp2r−1. Thus,

|Aut(Γ(R))| = (p3r − p2r)!(p2r − 1)!.

3 Cube Radical Zero Finite Rings of Characteristic p2

where p ∈ Z(R)− (Z(R))2

We consider the constructions of the above classes of rings for three different cases as follows:

Case (i) : pu1 = pu2 = pv = 0.

Let R0 = GR(p2r, p2) be a Galois ring of characteristic p2 and order p2r. Suppose {u1, u2} and {v}
are the generating sets for R0− modules U and V respectively. Then R = R0⊕R0u1⊕R0u2⊕R0v is
and additive abelian group. On this group, define multiplication as: (a0, a1, a2, a3)(b0, b1, b2, b3) =
(a0b0, a0b1 + a1b0, a0b2 + a2b0, a0b3 + a3b0 + a1b1 + a1b2 + a2b1 + a2b2). This multiplication turns
R into a commutative ring with identity (1, 0, 0, 0).

Proposition 3.1. Let R be a ring of above construction, the set of zero divisors Z(R) satisfies the
following properties:

(i) Z(R) = pR0 ⊕R0u1 ⊕R0u2 ⊕R0v

(ii) (Z(R))2 = R0v
(iii) (Z(R))3 = (0)

Proof. Let a ∈ R0 such that a /∈ pR0 and x ∈ Z(R). Then (a+ x)p
r

= apr + x1 where x1 ∈ Z(R).
But apr + x1 = a + x2, where x2 ∈ Z(R). Now, (a + x2)

pr−1 = 1 + x3 where x3 ∈ Z(R) and

(1+x3)
p2 = 1. So (((a+x)p

r

)p
r−1)p

2

= 1 which shows that a+x is invertible. Further, |Z(R)| = p4r

and |(R0/pR0) + Z(R)| = (pr − 1)p4r so that (R0/pR0)
∗ + Z(R) = R− Z(R) which shows that all

the elements which lie outside Z(R) are invertible.

(ii) From the multiplication defined onR, consider pr0+r1u1+r2u2+r3v and pr0+s1u1+s2u2+s3v in
Z(R). Then (pr0+r1u1+r2u2+r3v)(pr0+s1u1+s2u2+s3v) = r1s1u

2
1+r1s1u1u2+r2s1u2u1+r2s2u

2
2 ∈

R0v since u2
1 = u1u2 = u2u1 = u2

2 = v and v2 = 0. Adding the product finitely, we obtain
(Z(R))2 ⊆ R0v · · · · · · (∗)

Conversely, let x ∈ R0v, then x = yv where x ∈ R0, y ∈ ann(Z(R)). and v ∈ Z(R). From the above
argument, there exist u1, u2 ∈ Z(R) such that v = u1u2. So, yu1u2 ∈ Z(R).Z(R) = (Z(R))2. Thus
x ∈ (Z(R))2 ⇒ R0v ⊆ (Z(R))2 · · · · · · (∗∗) from (∗) and (∗∗), (Z(R))2 = R0v.

(iii) The product Z(R)(Z(R))2 = (Z(R))2Z(R) = (0) since Z(R))2 ⊆ Ann(Z(R)) = {pr0 + r1u1 +
r2u2 + r3v | r1 + r2 ≡ 0(mod p)} since RZ(R) = Z(R)R = Z(R), the set Z(R) is an ideal. Its
uniqueness and maximality follows from the fact that any other ideal distinct from Z(R) contains
a unit and is therefore the whole ring R.

Proposition 3.2. Let R be a ring of construction in this section. Then
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(i) |V (Γ(R))| = p4r − 1
(iii) Γ(R) is incomplete
(iii) diam(Γ(R)) = 2

Proof. (i) |V (Γ(R))| = |Z(R)∗| since Z(R) = pR0 ⊕R0u1 ⊕R0u2 ⊕R0v, then |Z(R)∗| = p4r − 1.
The proofs of (ii), and (iii) follow from the proof of the previous proposition.

Proposition 3.3. Let R0 = GR(p2r, p2) and R is a ring constructed in this section with pu1 =
pu2 = pv = 0. Then Aut(Γ(R0 ⊕R0u1 ⊕R0u2 ⊕R0v)) ∼= Sp4r−p3r × Sp3r−1.

Proof. Let ξ1, · · · , ξr ∈ R0 with ξ1 = 1 such that ξ̄1, · · · , ξ̄r ∈ R0/pR0
∼= Fp form a basis for Fp over

its prime subfield. From the given multiplication, Ann(Z(R)) = {pr0+aξiu1+bξiu2+cξiv | a+b ≡
(mod p)}. So |Ann(Z(R))\{0}| = p3r−1. Thus any Z(R)∗ ∋ x /∈ Ann(Z(R)) is of degree p3r−1 since
x is only adjacent to y ∈ Ann(Z(R))\{0}. On the other hand, each y ∈ Ann(Z(R))\{0} is adjacent
to Z(R)∗ ∋ x /∈ Ann(Z(R).) So, the degree of y is p4r−2. Now, let V1 = {x | Z(R)∗ ∋ /∈ Ann(Z(R))}
and V2 = {y | y ∈ Ann(Z(R)) \ {0}}. Then |V1| = p3r − 1 and |V2| = p4r − 1− (p3r − 1) = p4r − p3r.
Since the automorphisms of the graph permute V1 and V2 independently, we obtain Aut(Γ(R)) ∼=
Sp4r−p3r × Sp3r−1. Consequently, |Aut(Γ(R))| = (p4r − p3r)!(p3r − 1)!.

Case (ii) : pu1 ̸= 0, pu2 = 0, pv = 0
Under this case, the set of the zero divisors Z(R) satisfies the following properties:

Z(R) = pR0 ⊕R0u1 ⊕R0u2 ⊕R0v,

(Z(R))2 = R0u1 ⊕R0v,

(Z(R))3 = (0).

Considering (pr0, r1, r2, r3), (ps0, s1, s2, s3) ∈ Z(R). Then, (pr0, r1, r2, r3)(ps0, s1, s2, s3) = (0, pr0s1+
ps0r1, 0, r1s1 + r1s2 + r2s1 + r2s2) ∈ R0u1 ⊕ R0v. The rest of the steps are similar to the ones in
case (i) giving rise to the following in the sequel:

Proposition 3.4. Let R be a ring constructed in this section, with pu1 ̸= 0, pu2 = pv = 0. Then,

(i) |V (Γ(R))| = p5r − 1
(ii) diam(Γ(R)) = 2
(iii) gr(Γ(R)) = 3

Next, we determine the structure of the automorphisms of the graph of the ring considered under
case (ii).

Proposition 3.5. Let R0 = GR(p2r, p2) and R be a ring of the construction with pu1 ̸= 0, pu2 =
pv = 0. Then, Aut(Γ(R)) ∼= Sp2r−1 × Sp5r−p4r−p2r × Sp3r × Sp3r .

Proof. Let ξ1, · · · , ξr ∈ R0 with ξ1 = 1 such that ξ̄1, · · · , ξ̄r ∈ R0/pR0
∼= Fp form a basis for Fp over

its prime subfield. The annihilator Ann(Z(R)) = {pξiu1 + cξiv | c ∈ R0}. Now, |Ann(Z(R))| = p2r

and |Ann(Z(R)) \ {0}| = p2r − 1. Thus any Z(R)∗ ∋ x ∈ Ann(Z(R)) is of degree p5r − 2, since x is
adjacent to every y ∈ Z(R)∗.

Let V1 = (Ann(Z(R)))∗

V2 = {pr0 + aξiu1 + bξiu2 + cξiv | a+ b ≡ (mod p)} −Ann(Z(R)).

Now, |V2| = pr(p3r − p2r)pr − p2r = (p4r − p3r)pr − p2r = p5r − p4r − p2r.

Each vertex in V2 is adjacent to an element of the form pr0+a
′
ξiu1+b

′
ξiu2+cξi where pa

′
+ap = 0.

So the degree of each vertex in V2 is p4r − 2.
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Consider V3 = {pr0 + ξiu1 + cξiv | c ∈ R0}. Then |V3| = p3r. Each vertex in V3 is adjacent to
an element of the form ξiu1 + ξiu2 + cv or pξiu1 + cξiv. So the degree of each vertex in V3 is
p2r + p2r − 1 = 2p2r − 1.

Finally, V4 = {pr0+pξiu1+ξiu2+cξiv | c ∈ R0}, so that |V4| = p3r. Each vertex of V4 is adjacent to
a vertex of V2 or V1. Therefore the degree of a vertex in V4 is p5r−p4r−p2r+p2r−1 = p5r−p4r−1.
Since the automorphisms permute V1, V2, V3 and V4 independently, the results easily follows.

Case (iii) : pu1 ̸= 0, pu2 ̸= 0, pv = 0
In this case, the inherent properties of the multiplication together with the fact that pu1 ̸= 0, pu2 ̸=
0 gives a characterization of the structures of the zero divisors as:

Z(R) = pR0 ⊕R0u1 ⊕R0u2 ⊕R0v,

(Z(R))2 = R0u1 ⊕R0u2 ⊕R0v,

(Z(R))3 = (0).

Let (pr0, r1, r2, r3), (ps0, s1, s2, s3) ∈ Z(R). Then

(pr0, r1, r2, r3)(ps0, s1, s2, s3) = (0, pr0s1 + ps0r1, pr0s2 + ps0r2, pr0s3 + ps0r3 + r1s1 + r1s2 + r2s1 +
r2s2) ∈ R0u1 ⊕R0u2 ⊕R0v. Since Z(R) is an ideal, (Z(R))2Z(R) = Z(R)(Z(R))2 = (0).

The following results summarizes some properties of zero divisor graph of the ring constructed in
this section.

Proposition 3.6. Let R be a ring constructed in this section, with pu1 ̸= 0, pu2 ̸= 0, pv = 0.
Then

(i) |V (Γ(R))| = p6r − 1
(ii) diam(Γ(R)) = 2
(iii) gr(Γ(R)) = 3

The structure of the automorphisms of the graph of the ring considered in this section is summarized
in the following result.

Proposition 3.7. Let R0 = GR(p2r, p2) and R is the ring constructed in this section with pu1 ̸=
0, pu2 ̸= 0, pv = 0. Then,

Aut(Γ(R0 ⊕R0u1 ⊕R0u2 ⊕R0v)) ∼= Sp3r−1 × S2p2r × S2(p3r−p2r) × S2p5r−2p4r−2p3r .

Proof. Let ξ1, · · · , ξr ∈ R0 with ξ1 = 1 such that ξ̄1, · · · , ξ̄r ∈ R0/pR0
∼= Fp form a basis for

Fp over its prime subfield. Consider V1 = Ann(Z(R))∗ = {pξiu1 + pξiu2 + cξiv | c ∈ R0}. Then
|V1| = p3r−1 and each v ∈ V1 is adjacent to every other vertex in the graph. Therefore degv = p6r−2
for all v ∈ V1. Let V2 = {ξiu1 + cξiv} ∪ {ξiu2 + cξiv} where C ∈ R0. Then |V2| = 2p2r. Now, let
A = {pr0+ξiu1+cξiv}∪{pr0+ξiu2+cξiv}. Consider V3 = A−V2. Then |V3| = 2(p3r−p2r). Finally,
we assume B = {pr0 + aξiu1 + bξiu2 + cξiv | a+ b ≡ (mod p)}, and consider V4 = B −Ann(Z(R)).
Then |V4| = 2[pr(p3r − p2r)pr − p3r] = (2p4r − 2p3r)pr − 2p3r = 2p5r − 2p4r − 2p3r. Using the fact
that automorphisms permute V1, V2, V3 and V4 independently, we obtain the result.

4 Cube Radical Zero Finite Rings of CharR = p2 where
p2 ∈ Z(R)

In this case, the product of any two of the elements of R is given as follows:

(r0, r1, r2, r3)(s0, s1, s2, s3) = (r0s0+pr1s1, r0s1+r1s0, r0s2+r2s0, r0s3+r3s0+r1s1+r1s2+r2s1+
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r2s2) and pu1 = pu2 = pv = 0, u2
1 = pξia+ bξiv, u2

2 = cξiv and v2 = 0, a, b, c ∈ R0. The structure
of the zero divisors is given by Z(R) = pR0 ⊕ R0u1 ⊕ R0u2 ⊕ R0v so that (Z(R))2 = pR0 ⊕ R0v
and (Z(R))3 = (0).

Proposition 4.1. Let R0 = GR(p2r, p2) and R = R0⊕R0u1⊕R0u2⊕R0v is a ring with respect to
the multiplication in this section, with p2 ∈ Z(R), v2 = pu1 = pu2 = pv = 0, u2

1 = pξia+ bξiv, u2
2 =

cξiv, a, b, c ∈ R0. Then,

Aut(Γ(R)) ∼= Sp2r−1 × Sp3r−p2r × Sp4r−p3r .

Proof. Let ξ1, · · · , ξr ∈ R0 with ξ1 = 1 such that ξ̄1, · · · , ξ̄r ∈ R0/pR0
∼= Fp form a basis for Fp over

its prime subfield. From the given multiplication, Ann(Z(R)) = {pr0 + cξiv | r0, c ∈ R0}. Consider
V1 = Ann(Z(R)) \ {0}. Then V1 = p2r − 1 and each x ∈ V1 is adjacent to every other vertex in the
graph. So deg(x) = p4r −2. Let V2 = {pr0+ ξiu1+ cξjv | r0, c ∈ R0}. Then |V2| = p3r −p2 and each
vertex y ∈ V2 is adjacent to the vertices in V1. So the degree of a vertex in V2 is p3r−p2r−1. Finally,
the vertex set V3 = {pr0+aξiu1+bξju2+cξkv | a+b ≡ (mod p), c ∈ R0}∪{pr0+ξiu2+dξiv | d ∈ R0},
so that |V3| = p4r − p3r and each z ∈ V3 is adjacent to the other vertices in V1 or each vertex of the
form pr0 + aξiu1 + bξju2 + cξkv, | a + b ≡ (mod p) and vice versa. So the degree of the vertex in
V3 is p3r − p2r + p2r − 1 = p3r. The result easily follow from the fact that automorphisms permute
V1, V2 and V3 independently.

5 Cube Radical Zero Finite Rings of Characteristic p3

The product of the elements is given as follows:

(r0, r1, r2, r3)(s0, s1, s2, s3) = (r0s0, r0s1 + r1s0, r0s2 + r2s0, r0s3 + r3s0 + r1s1 + r1s2 + r2s1 + r2s2).
Using the given multiplication, the zero divisors satisfy the following properties:

Z(R) = pR0 ⊕R0u1 ⊕R0u2 ⊕R0v,

(Z(R))2 = p2R0 ⊕R0v,

(Z(R))3 = (0).

Proposition 5.1. Let R0 = GR(p3r, p3) and R = R0 ⊕ R0u1 ⊕ R0u2 ⊕ R0v is a ring with respect
to the multiplication given in this section, with pu1 = pu2 = pv = 0; u2

1 = p2ξia + bξjv, u2
2 =

cξiv, v2 = 0, a, b, c ∈ R0. Then,

Aut(Γ(R)) ∼= Sp4r−p3r−1 × Sp3r × Sp5r−2p4r+p3r × Sp4r−p3r .

Proof. Let ξ1, · · · , ξr ∈ R0 with ξ1 = 1 such that ξ̄1, · · · , ξ̄r ∈ R0/pR0
∼= Fp form a basis for Fp over

its prime subfield. Using the given multiplication, Ann(Z(R)) = {p2r0+aξiu1+bξiu2+cξiv | a, b, c ∈
R0, a+ b ≡ 0(mod p)}. Let V1 = Ann(Z(R)) \ {0}. Then |V1| = pr(p2r − pr)pr − 1 = p4r − p3r − 1.
Since each vertex in V1 is adjacent to every other vertex in the graph, the degree of x ∈ V1 is
p5r − 2.

Next, consider V2 = {pr0 + aξiu1 + bξiu2 + cξiv | a, b, c ∈ R0, a + b ≡ 0(mod p)} \ V1. Then
|V2| = (p2r − pr)(p2r − pr)pr = (p2r − pr)(p3r − pr) = p5r − 2p4r + p3r. Every vertex y ∈ V2

is adjacent to a vertex in V1 or a vertex of the form p2r0 + a
′
ξiu1 + b

′
ξiu2 + c

′
ξi + c

′
ξiv, where

a
′
, b

′
, c

′
∈ R0, a

′
+ b

′
̸≡ 0(mod p). So the deg(y) = p4r − p3r − 1 + p3r = p4r − 1. Let V3 = {p2r0 +

a
′
ξiui+b

′
ξiu2+c

′
ξiv | a

′
, b

′
, c

′
∈ R0, a

′
+b

′
̸≡ 0(mod p)}. Then |V3| = p4r−1−(p4r−p3r−1) = p3r.

Each vertex z ∈ V3 is adjacent to a vertex in V1 or V2. So deg(z) = p5r −2p4r +p3r +p4r −p3r −1 =

p5r − p4r − 1. Finally, V4 = {pr0 + a
′
ξiu1 + b

′
ξiu2 + c

′
ξiv | a

′
, b

′
, c

′
∈ R0, a

′
+ b

′
̸≡ 0(mod p)} − V2.

Then |V4| = (p2r − pr)pr.pr = p4r − p3r. Each vertex in V4 is adjacent to all the vertices in V1 but
neither in V2 nor in V3. Therefore, deg(w) = p4r − p3r − 1 for each w ∈ V4. Since automorphisms
permute the vertices of V1, V2, V3 and V4 independently, the results easily follows.
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6 Conclusion

In Study we determined the automorphisms of such rings in which the product of any three zero
divisor is zero and revealed the structures and order formulae for automorphisms. This was achieved
by partitioning the ring under consideration into mutually disjoint subset of invertible elements and
zero divisors, isolation of zero divisors and determination of there graphs using case to case basis
discovery of there maps. To this end, research in this area is still minimal and we recommend other
researchers to carry out more studies regarding automorphisms of zero divisor graphs in future.
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