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ABSTRACT

This paper presents a new analytical method to determine amplitude of density fluctuations of
152 nearby clusters (z ≤ 0.15). We investigate the rms linear fluctuation in the mass distribution
on scales of 8h−1Mpc i.e. σ8 , by using Press-Shechter mass function. The mass function is
estimated for masses larger than Mlim = 4 ×1014h−1M⊙. We find rms density fluctuation equal
to 0.52 for the critical density universe. The results found are consistent with those, obtained
with alternative models for the high density universe. The results agree with the previous papers
obtained from different models and considerations. This takes us to introduce a new approach to
estimate the cosmological parameters. For critical density , the slight variation in results may be
due to the fact that there are observational uncertainties in estimates of cluster masses, which are
in general not neglegible.
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1 INTRODUCTION

The largest virialized structures at present are
the clusters of galaxies. One of the most
fundamental predictions of hierarchical structure
formation is the mass function: the number
density of objects as a function of their mass M.
The abundance of clusters as a function of mass
and redshift has been shown to be a sensitive
probe of cosmological parameters like density
parameter (ωm) and rms density fluctuaton σ8 [1,
2, 3, 4, 5]. In order to link the observed mass
function of clusters to an underlying cosmology,
one must either use an analytic description of
cluster abundance or many numerical studies
[6, 7, 8]. Although one of the most commonly
used descriptions of cluster halo abundance is
the Tinker et.al. (2012), we shall appeal to the
description of Press and Shecter [9].

Galaxy clusters can be effeciently used as
tools for estimating fundamental cosmological
parameters because of their relative dynamical
youth. The mass within the virial radius of a
rich cluster Mlim = 5 ×1014h−1M⊙ is very
close to the mass enclosed within a sphere of
radius 8h−1Mpc. Because of this the present day
abundance of the rich clusters directly reflects
the amplitude of density fluctuations on a scale
of 8h−1Mpc and can be used to measure
this amplitude with a minimum of assumptions.
It does however depend on the value of the
cosmological density parameter Ω0. Thus the
local cluster abundance fixes the value of σ8,
the rms density fluctuation in spheres of radius
8h−1Mpc, as a function of Ω0 [10].

In this work we aim to investigate the constraints
on the power spectrum of the cosmic density
fluctuations, by estimating the quantity related to
the power spectrum i.e. dispersion of the density
field σR at R = 8h−1Mpc. This analysis is based
on the virial mass estimated by [11], (hereafter
G98), for a sample of 152 clusters. In section
2 we discuss the cosmological parameter σ8 .
In section 3 we apply the Press-Shecter mass
function to these clusters and estimate the value
of σ8. In section 4 we discuss the results and
finally in section 5 we present the conclusion. A
Hubble constant H0 = 100 h kms−1 Mpc−1 is
used in this work.

2 POWER SPECTRUM
There have been rapid advances in observational
cosmology, leading to a precison cosmological
model and many cosmological parameters
determined to one or two significant figure
accuracy. In this determination, the observational
cosmologist utilizes the astronomical information
to derive cosmological parameters. This
method of transformation from the observables
to the parameters, usually involves many
assumptions about the nature of the data. A
successful cosmological model of the universe
should include a description of deviations from
homogeneity, at least in a statistical way. Indeed,
some of the most powerful probes of the
parameters study the evolution of perturbations,
as it is intertwined with the determination of
cosmological parameters. Other than the large-
scale primordial amplitude, there are different
ways in which the density perturbation amplitude
can be specified. For example studying its
effect on the Cosmic Microwave Background
(CMB) or by specifying a short-scale quantity, a
common choice being the present linear-theory
mass dispersion on a scale of 8h−1Mpc, known
as σ8. In the heirarchical clustering, once
the perturbations have developed to amplitude
greater than some critical value δc, they develop
rapidly into bound objects with mass M . The
perturbations can then be assumed to have a
power law spectrum, growing with time up to the
present epoch. The rms linear density fluctuation
σM is related to the fluctuation power spectrum
P (k) as

σ2
M = (2π2)−1

∫ ∞

0
dkk2P (k)W 2(kR) (2.1)

where k is the wave number and R is the
comoving fluctuation size. Here W (kR) is the
Fourier transform of the window function, which
describes the shape of the volume from which
the collapsing object is accreting matter. Finally
W (kR) is assumed to have the top hat profile,
given by

W (kR) =
3(sin kR− kR cos kR)

(kR)3
(2.2)

Accordingly the mass M of a cluster arising
from the collapse of a fluctuation with
typical size R is

M =
4π

3
ρc0R

3 (2.3)

where ρc0 is the average matter density.
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The dependence of the power spectrum on the
wavenumber k is usually written as

P (k) = AkT 2(k) (2.4)

where T (k) is the transfer function and A is a
normalization constant. The transfer function
depends both on the cosmological parameters
as well as on the cosmic matter constituents
e.g. fraction of cold, hot and baryonic matter,
number of relativistic species. For a pure Cold
Dark Matter (CDM) model, T (k) depends to a
good approximation only on the shape parameter
Γ = Ω0h (e.g. Bardeen et al. 1986), for
neglegible baryon concentration. The amplitude
of P (k) is usually expressed in terms of σ8,
the r.m.s. density fluctuation within a top-hat
sphere of 8h−1Mpc radius. The measured rms
fluctuation in galaxy numbers within a sphere of
radius 8h−1Mpc reaches close to unity. Because
of this the rms linear fluctuation in mass σ8

is taken as a measure of amplitude of density
fluctuations.

The cosmological parameters are helpful tools
that help us to track the evolving history of the
universe, back to an epoch where interchanges
between the densities of the different species
are allowed by interactions. This is believed
to have happened shortly before Big-Bang
Nucleosynthesis (BBN) probably at neutrino
decoupling [12]. In the present paper we
are discussing the accuracy of power spectrum
amplitude σ8 analytically, by using Press-Shecter
Mass Function.

3 PRESS-SHECTER MASS
FUNCTION

The Press-Shecter technique is an excellent
analytic approach to describe the evolution of
the cluster mass function, which has been
extensively used against N-body simulations and
found to fare extremely well [13]. The theory of
Press and Shecter (1974) describes the evolution

of the cluster mass function n(M) of cosmic
structures, defined by

dN = n(M)dM (3.1)

where dN is the number of structures per unit
volume with mass between M and M + dM .
The Press and Shecter analysis begins with
the assumption that, when the purterbations
have developed to amplitude greater than some
critical value δc, they rapidly develop into bound
objects with mass M . The perturbations have
a power-law power-spectrum P (K) = kn which
follow the rules that describe the growth of the
perturbations with cosmic epoch. Press and
Shecter assumed that the primordial density
fluctuations are Gaussian fluctuations and are
described by Gaussian probability distribution:

P (δM )dδM =
1

(
√
2π)σM

exp(−
δ2M
2σ2

M

)dδM (3.2)

where δ =
δρ
ρ

is the density contrast associated
with a perturbation of mass M. The probability
that at some future time δM exceeds some critical
value δc is now given by

P>δc(M) =

∫ ∞

δc

P (δM )dδM (3.3)

The probability P>δc is proportional to the number
of cosmic structures with density perturbations >
δc. A value of > δc = 1.68 is of great importance
because this is the value of density pertubations
which corresponds to virialized structures. To find
the number of structures with mass M , which are
isolated i.e. surrounded by underdense regions,
we must subtract the term P>δc(M + dM). The
underdense regions i.e. those with δ < δc, are
not properly accounted for, which means only
half of the total mass density being condensed
into bound objects. Press and Shecter solved
this problem by multipling the mass function by
a factor of 2. As mentioned above, we can now
develop the expression for mass function n(M),
by the difference of the probabilities:

n(M)dM = 2[P>δc(M)− P>δc(M + dM)] (3.4)
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To convert probabilities to units of per volume, we multiply the above equation by ρc0/M

n(M)dM = 2
ρc0
M

[P>δc(M)− P>δc(M + dM)] (3.5)

The above equation can be written as

n(M)dM = −2
ρc0
M

dP>δc

dM
dM (3.6)

where ρc0 is the present day density of the matter.

Equation (3.6) can further be written as

n(M)dM = −2
ρc0
M

dP>δc

dσM

dσM

dM
dM (3.7)

Using equation (3.3), we evaluate the derivative dP>δc
dσM

as

dP>δc

dσM
=

d

dσM

∫ ∞

δc/
√

2σM

PδMdδM (3.8)

Again using equation (3.2), we proceed to obtain the final result of the derivative dP>δc
dσM

dP>δc

dσM
=

1√
2π

exp(− δ2c
2σ2

M

)
δc
σ2
M

(3.9)

where we have used the fundamental theorem

d/dx

∫ x

a

f(t)dt = f(x) = −d/dx

∫ a

x

f(t)dt (3.10)

Substituting equation (3.9) into equation (3.7) yields the required mass function

n(M)dM = −
√

2

π

dσM

dM

ρc0
M

δc
σ2
M

exp(
δ2c

2σ2
M

)dM (3.11)

where n(M) is the number density of collapsed objects per unit mass, σM is the variance of the
density field or root mean squared fluctuation, filtered on a scale R enclosing a mass M at redshift
z and ρc0 is the critical density of the universe at the present epoch. A value of δc of great interest
to us is δc = 1.686 since we have seen that this is the critical linear-theory density contrast needed
for collapse, which corresponds to virialized structures. The normal procedure is to evaluate n(M) by
calculating σM and its derivative from the linear theory matter power spectrum.

Determining n(M) from galaxy clusters has been an important problem in cosmology. Different
techniques are avaiable for determining n(M). One method is to find the normalization of the matter
power spectrum through the parameter σ8, that is , σR evaluated for R = 8h−1Mpc at z=0. For
determining n(M) the next thing we need is the derivative of σM . It is simplest to use an approximation
to the true shape of σM = σR in the vicinity of R = 8h−1Mpc. Particularly for low densities , we
require accuracy over a greater range of scales, we use the more accurate fit, with the scalar spectral
index ns = 1 as [14]:

σR = σ8(
R

8h−1Mpc
)−γ(R) (3.12)

where
γ(R) = (0.3Γ + 0.2)[2.92 + log(

R

8h−1Mpc
)] (3.13)

with Γ = 0.230
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Now the mass given by equation (2.3), corresponds to a sphere of radius,

R = [
3M

4πρc0
]1/3 (3.14)

Where ρc0 is the critical density at the present epoch given by ρc0 = 2.78× 1011h2M⊙Mpc−3.

For evaluating the mass function n(M), given by equation (3.11) we need to evaluate the derivative
dσM
dM

. We proceed as:
dσM

dM
=

dσR

dR

dR

dM
(3.15)

Now using equation (3.12) in equation (3.15), we obtain

dσM

dM
= −0.77

σR

R
(
dR

dM
) (3.16)

Again using equation (3.14) in the above equation, we obtain the required derivative dσM
dM

:

dσM

dM
= −0.77

3

σR

M
(3.17)

Inserting equation (3.17) into equation (3.11) yields the desired mass function

n(M)dM =

√
2

π

ρc0
M2

0.77

3

δc
σR

exp(
−δ2c
2σ2

R

)dM (3.18)

This is a very useful formalism for studying the development of galaxies and clusters of galaxies in
hierarchical scenarios for galaxy formation. Now we compare this function with the observed cluster
abundance of the 152 clusters of G98. To equate it with the observed number density of these clusters
with units of per mass, we need to divide the number density by the mass scale M . The resulting
number density per unit mass comes out to be equal to

n(M)dM = 6.3× 10−6M−1h3Mpc−3 (3.19)

Let us now equate this cluster number density with the number density as given by Press-shecter
mass function of equation (3.18). Proceeding in this direction the result is

x exp(
−x2

2
) = 0.04 (3.20)

with x = δc
σR

.

This equation can be solved numerically. A simple way of doing this is to write it as

x =

√
2 ln(

x

0.04
) (3.21)

We now start iterations. Making a first guess for x we plug it on the right hand side . Then we use the
output as the input for the next iteration. When the result changes little from one iteration to the next,
a solution has been found. Using the repeated iterations we found the solution x = 2.9.

Also from equation (3.14), by substituting the value of cluster mass, Mlim = 4 ×1014h−1M⊙ we get
R = 7.00.
So

x =
δc
σR

= 2.9 (3.22)
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Since δc = 1.686, we obtain

σR =
1.686

2.9
= 0.58 (3.23)

Finally we can now use equation (3.12) to find the rms density fluctuation σ8. Sustituting equation
(3.23) into equation (3.12) yields

σR = 0.58 = σ8(
R

8
)−0.77 = σ8(

7.00

8
)−0.77 (3.24)

and we calculte the result as σ8 = 0.52

This is the value of the amplitude of density
fluctuations for the given sample of 152 clusters.
The resuts we have obtained are consistent
with those obtained by other authors from the
cluster abundance, with alternative models, for
the high density universe. Eke et.al.(1996) and
Markevitch (1998) found a similar normalization
of σ8 = 0.52 ± 0.04 for ω0 = 1, based on the
analysis of the cluster temperatures by Henry and
Arnaud (1991) [15, 16, 17]. A slightly higher
normalization σ8 = 0.57 ± 0.05 for ω0 = 1 has
been obtained by White et.al. (1993) from the
median velocity dispersion of Abell clusters, as
provided by Girardi et.al. (1998) and from the
temperature functions of Henry et.al. (1991) and
Edge et.al. (1990) [18, 19]. Oukbir et.al. (1997)
found the same result as White et.al. (1993) [20].
Almost similar results σ8 = 0.58± 0.02 for ω0 = 1
were obtained by Borgani et.al. (1999) [21]. But
considerably higher results σ8 = 0.748 ± 0.035
have been found by Hudson et.al. (2012), by
using peculiar velocities as a probe of the growth
rate of mass density fluctuations in the universe
[22]. Still higher results have been obtained by
Planck Collaboration 2018; I and VI: σ8 = 0.811±
0.006 [23, 24]. It is remarkable that all these
results, except Hudson et.al. (2012) and Planck
Collaboration 2018 results, although based on
largely different data sets, give almost the same
normalization.

4 DISCUSSION

The masses of rich clusters of galaxies provide
a sensitive measurement of the amplitude of
linear fluctuations in mass on a standard scale of
8h−1Mpc, where galaxy fluctuations have near
unit amplitude. This measurement is almost
independent of the shape of the fluctuation
spectrum and depends primarily on the Gaussion
nature of the initial density field and on the mean

cosmological density. But in order to do this one
must be able to determine the mass of clusters
accurately. Since the dominant contribution to
the mass of a cluster is in the form of dark matter,
this seems to be a non-trivial task.

We have presented a new analytical
determination of the mass function n(M) of
nearby galaxy clusters. We have applied the
Press-Shecter formalism to 152 nearby clusters.
This analysis is based on the mass estimates by
Girardi et.al. (1998) for a sample of 152 clusters.
Applying Press-Shechter theory, we determine
the number density of the given sample of 152
clusters. Then we compare it with the observed
number density of these clusters as provided
by Girardi et.al. (1998). By comparing the two
number densities, we determine the amplitude
of the fluctuation power spectrum σ8 and find
out that σ8 = 0.52. The results are consistent
with those, obtained with alternative models for
the high density universe . Our results closely
match with those from Eke et.al. (1996), White
et.el. (1993), Edge et.al. (1990), Oukbir et.al.
(1997) and Borgani et.al. (1999). But our results
are lower than Hudson et.al. (2012) and Planck
Collaboration 2018 Results I and VI.

However the precise value of σ8 is still to
be determined because there are several
uncertainties in the values of cluster number
density and the masses of clusters which
propagate to an uncertainty in σ8. There are
several errors in this estimate, which are difficult
to quantify , since they are entirely due to
systematic uncertainties in the mass estimates
for rich clusters of galaxies. For example to
determine the number density of galaxy clusters,
we find the normalization of the matter power
spectrum through the cosmological parameter
σ8 i.e. σR evaluated at R = 8h−1Mpc. But
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for doing that we should determine the mass
of the galaxy clusters. Since the dominant
contribution to the mass of a cluster is in the form
of dark matter, so this is a difficult task. Again
there are uncertainties in the values of number
density and mass of clusters which propagate
to an uncertainty in the determination of σ8.
A reason of caution when comparing data and
model predictions is related to the observational
uncertainties in estimates of cluster masses,
which are in general not neglegible.

In future we intend to increase the sample
of clusters, by taking 800 nearby clusters
from Sloan Digital Sky Survey (SDSS) for the
investigations. We intend to determine their
dynamical parameters like, mass, virial radius ,
number density and other parameters, eventually
leading us to determine the normalization σ8. We
also intend to use other mass functions like Sheth
and Tormen (2002) and Tinker et.al. (2008) to
determine the cosmological parameters [25]. The
problem is a challenging one and will throw light
on the large scale structure of the universe in a
more profound way.

5 CONCLUSION

Cosmological parameters are forever increasing
in the scope, and nowadays include the
parameterization of some functions, as well as
simple numbers describing properties of the
Universe. The original usage was limited to
describing the global dynamics of the Universe,
such as its expansion rate and curvature. They
help us to know how the matter budget of
the Universe is built up from its constituents:
baryons, photons, neutrinos, dark matter, and
dark energy. The parameters also lead to
describe the nature of perturbations in the
Universe, through global statistical descriptors
such as the matter and radiation power spectra.
Typical comparisons of cosmological models with
observational data now feature between five and
ten parameters.

In this work we estimate the cosmological
parameter σ8, because in the linear theory it is
one of the fundamental parameters to describe
the power spectrum of mass fluctuations in the
universe. In the large scale structure simulations,
as well, it is one of the key parameters.

In the present paper we determine the
cosmological parameter σ8 by applying Press-
Shecter mass function to a sample of 152
clusters. We find out that σ8 = 0.52. It is
remarkable that the estimated results closely
match with those obtained with alternative
models such as galaxy-galaxy correlations,
fluctuations in the CMB, gravitational lensing
statistics and galaxy peculiar velocities. However
our results are lower than Planck Collaboration
2018 results. This may be due to the fact that
there are several uncertainties in the masses
and number densities of clusters which affect the
precise value of σ8. In future this can be taken
care of by taking a larger sample of clusters.
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