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1 Introduction

In 1920, Hardy announced his well celebrated and famous inequality (Hardy, 1920). If p > 1, f > 0, p—integrable
on (0, 00) and

F(x) = /Oz f(t)dt, then,

/Ooo <$)pdm§ (%)pfowfp(x)dx, p>1 (1)

P
where f is a non-negative measurable function and the constant (ﬁ) is the best possible.

The inequality was proved in Hardy (1925) and also holds for:

[ (58) e () [

where 0 < a < b < 00, see (Kufner et al., 2006).

An improved form of the inequality was observed in (Sulaiman, 2012), where f is non-decreasing. If f > 0, and
non-decreasing, F is as defined by (1.1). f >0, g > 0, ﬁ is non-increasing, p > 1 and 0 < a < 1 then

[ Ge) == aiarr [ () e @

The inequality has been developed and applied in almost unbelievable ways, see (Kufner et. al., 2010, Kufner
and Persson, 2003, Opic and Kufner, 1990, Hardy, 1928, Hardy, 1959) and the references therein. The prehistory
of the inequality could be sourced in (Kufner et. al., 2006, Gogatishvili and Unver, 2006, Hasan et al., 2024).
This work is motivated by the results of Imoru (1977) which used adaptation of convexity of a function to obtain
the following: For p > 1 the refined inequality (2).

[ s @) + () a0 e < () [ st et Q

0

and /b°° (@) F PP (2)dg () + (l%k)pg(b)”F”(b) < (1%);7 /b " g@y P (2)dg () (4)

hold with both inequalities reversed in 0 < p < 1. Equality holds in either inequality, when either p = 1 or f = 0.
P P
1 ﬂ)

The result generalized Shum (1971).

The constant ( " or ( " is the best possible when the left side of (3) or (4) is unchanged, respectively.

The objective of this paper is to obtain a new integral inequality which is an extension of ( 1). Indeed, we shall
show that (1) in its modified form leads us to some extensions, and a new generalization of a class of inequalities
which are of Hardy-type integral inequalities.

2 Some Useful Definitions:

We need the following tools in the proofs of our main results.

Jensen inequality:

Let u be a probability measure and let ® > 0 be a convex function. Then, for all {(z) be a integrable function

e [@ctan < ( / C(M)du) (5)
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Chebyshev integral inequality:

If {,w: [a, 8] — R are integrable functions, both increasing or both decreasing, and p : [, 8] — R is a
positive integrable function, then

/a " (@) () / Co@ela)dr < / () / (@) () (a)da (6)

We observe that if one of the functions ¢ or w is decreasing and the other is increasing, then (5) is reversed and
where p(z) = 1. we have

/a (@) () / el < / @) / " @t (1)

Submultiplicative:

2(0)

Let ® > 0 is submultiplicative, and ®(0) = 0. If ®'(z) is non-decreasing (nonincreasing), then =-is non-

decreasing (non-increasing).

A function @ is called submultiplicative, if ®(zy) < ®(z)®(y), for all z,y > 0 In particular, for all n > 1, we
have ®(z™) < ®"(z)x > 0.

A function ¢ : [0,00) — R is superquadratic provided that for all x > 0 there exists a constant C € R such
that
P(y) —P(z) —2(ly—=)) =2 Cely—2x), VYV y=0 (8)

We say that ¢ is subquadratic if -® is superquadratic.
Corrolary 2.1: (See [17, Theorem 2.3].)

Let (2, 1) be a probability measure space. The inequality

o ([ 1) < [ 2t - [ o (|- [ s

holds for all probability measures p and all non negative p-integrable functions f if and only if ® is superquadratic.
Moreover, (1) holds in the reversed direction if and only if ® is subquadratic.

)duts) (9)

Corrolary 2.2: (See [17, Lemma 3.1].) ® : [0,00) — R is continuously differentiable and ®(0) < 0. If &’
@' ()

is superadditive or is nondecreasing, then ® is superquadratic.
Corollary 2.3

Let a,b € R. Suppose nn : R — [0,00) is rd-continuous and ¢ : [0,00) — R is a continuous, convex and
superquadratic function. Then,

(b% / bn(t)du(t)>r < b (nw— ‘nw—ﬁ / )

The proof of the next theorem is sufficient for Corollary 2.3.

) du(a) (10)

Corollary 2.4

Let u,v € R be non negative functions such as p—integral fTb u}“@%du(@ < oo and define the weight

—a)o(z)—a

function v(7) by

b
o(t) = (t - a) / (“(%dm) te (ab)

z—a)(o(x) —a)
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(i) If real valued function @ is convex and superquadratic function such that on (a,b), 0 < a < b < co then,

b 1 () " Az
/ “@)’7@)(0(@_@ / n(t)du(t)) e

() " u(z)n(z
( —/ n(t)du(t)> (z)n(z)

mdﬂ(l’)dﬂ(t)- (11)

holds for all p—integrable function n € R such that n(z) € (a,b).

(ii) If the real valued function @ is convex and superquadratic function such that on (a,b), 0 < a < b < oo then,
(11) holds in the reverse direction.

Proof:
(i) Applying Jensen's inequality and Fubini theorem (See [17, Theorem 2.1].), we have

' L " du(a)
| ut@mta (U(I)_a / n(t)du(t)> =

b @@ @
< / e / (n(t))" dpu(x) dp(t)

z —a)(o(z)
[t ul@n@) [ R a )
/a @—a)(o(z) —a) /t 0O - G —a / n(t)du(t)| dp(z)

/ /x_w(x)_a () () (12)

" L u@n() .
/ / 0O = = [ O] G du(a)dute)

. o T u(@)n(e) N
/ / 00 = =y [ MOd0)] T @)

(ii) This is similar to the proof of (i) above but the only difference is that in this case the inequality sign is
reversed. The proof is complete.

Further simplification of (12), if u(z) = (z — a),a < b < 0o and u(z) = 1 yields

/ab”(m) (m /abn(t)) dp(z) — /abn(x)n(a:)Tdu(g;)

b
< / n(@)n(x) duz) (13)

L[ (o

39



Oluwatoyin et. al.; Asian J. Math. Comp. Res., vol. 82, no. 1, pp. 36-51, 2025; Article no.AJOMCOR.12625

but if b = oo then, above inequality becomes

> L@ @)
/ n(w)<(() 5/ n(t)> i)

< [ o) 2 duta) (14)

that is

= L@ Y du@) 2 @)
/ n<m><(g(x)a) / n(t)> P [ o) 2 o)

= L (G "
<[] e - mma [ 00| S sdu@au
(ii) The inequalities (15) hold in the reversed direction if ® is subquadratic.
Corollary 2.5 :
Let wi(t),...,wi(t) > 0, and W(z) = [ wi(t),...,wi(t) dit,...,dit . If &' (z) is non-decreasing (non-increasing)

then, function M

for the proof.

is also non- decreasmg (non-increasing) on (0,00). See (Anthonio and Rauf, 2021)

Corollary 2.6 :

m(w)g;-z-ui(w) is

Let 0 < b < oo,u : (0,00) — R be a nonnegative weight function such that the function x —
locally integrable on (0, 00), and define the weight function v by

b M
1/1(t)...1/1-(t)=t/ w dzi...dz;, for allte (0,b)
t
(1) If the real-valued function is superquadratic on (a,b),0 < a < b < oo, then

/bul("’J < /C1 (t)...di(t))TMJr

// (Q ff/ Gt (t)...di(t))rwdl(m)...di(x) di(t)...di(t) (16)

s/ i () (@) (G () - G (0)

(2) If the real-valued function is subquadratic on (a,b),0 < a < b < oo, then (6) holds in the reversed direction.

holds for all ( with a < {(z) <c¢, 0<x<b
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Proof. We adopt the applications of refined Jensen's inequality (5) and Fubini’s theorem see (Anthonio and
Rauf, 2021). we have that

b

s (z wi(x l ® L ) L ) Td1(zc)d,(m)

@) )(%/0 Q). C(b)d (t)...dz(t)) B
b (2

< [0 PG a) d@) i) b d

). difh)-

S N CORNIU Ry @) i) D)) 0.
:/ab(m(t)...ci(t)r/bLQ”dl( ) di (@) (1), di(t)—

[ [ (e —f/cl GO d(t))rwdmx)...di(x) ). i)

:/abyl(t)...ui(t)(gl(t)...g(t)) //( )i (2) . d; _7/ Gt .Q(t)dl(t)...dz-(t)>r

Mdl(x)dl(x) di(t) ... di(t)

x2

X

(17)
which is the proof of Corollary 2.6.

The proof of (2) is complete if the reserve sign of above inequality is case. However, is similar to the proof of

(1)
Corollary 2.7 :

Let 0 < b < oo,u : (0,00) — R be a non-negative locally integrable function (0, c0) and defined the function by

(i) If the real-valued function is superquadratic on (a,b),0 < a < b < oo, then

/:o w(z) . i) (a: /:O A, amid = dz-(t)>r di () - a@)

e Y (B O\ ). dy(e) DO di)
+/b /b(cl(t)...cz /xCl(t)...Q(t) 2 ) (). wi(x)d () . .. di(2) (18)

</boom(x)...ui(av)(Q(t)...{i(t))T M holds for all ¢ with a < {(z) <¢,0<x<b
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Proof. With all assumption of the of the proof Corollary 2.6 we have that:

ooul(x) cooui(z) (gg/: ). ~-Ci(t)dl(t) . ..di(t)>r di(x)...d;i(z)

b 2 T

s/fm(x)...ui<m)/0<<1<t>...ci<t>>r Mm@...di(m)f

f/booul(m)...ui(x)/zo( ,m/ Gt )té-di(t))rdl(t)-t;ti(t) 0 (). di(z)
:/f(cl(t)...ci(t)r/t @) o) da(@)...di(e) da(t)...di(t)—

’/m/( *m/ SIC 1(t).- --di(ﬂ)rm(w) coui(z) du(@) .. di(e) du(t). .. di(t).

< [0 a0 a0 Mf/:/;(g(t)...m w0 —s [ >t.2.di<t>)r
() .. us(z) di(@)- .. ds(x) M

(19)
which is the proof of Corollary 2.7.

(ii) If the real-valued function is subquadratic on (a, b),0 < a < b < oo, then (2.2) holds in the reversed direction.

3 Some Extension of Hardy-type Inequalities

The following results are used as preliminary to our main results.

Theorem 3.1 :

Let Ci(x)...¢G(x) >0, wi(z)...wi(x) >0, 0<a<l, r>1, q>$and

Wl(m),...,Wi(ac):/Ozwl(t),...,wl(t)di(t),...,di(t) for all i=123 €N (20)

If the function m is non-increasing function. Then the following inequality

® F{(r). . Fi(@) , . 1 < X ()" |
A e o LR e e Ve T e Ml w1 dl(t)w(’;f)(t)
holds.
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Proof.
®F{(@)... F(2) @) W () (R A\ ) 4 ( (z
e o / W) W )(t ) (1(t)...Cl(t)d,(t),...,dl(t)) (@), ... di(z)

p—1 1
r

T<A aﬁl)xg() G”@Mdﬂwu,¢u0

< mwlr(x)...wir(w)«/o 2y (1), . di(t)) >d1(m),...,di(m)

= Wi(z)... Wy (x) (/Ox t“dl(t),...,di(t))T_ /Ox T T @) @) da(t), ..., di(t) du(@), ..., di(z)

0

1_6” 1/ GG )/t 20O S W () W () da (), - da(x) da(t),. . di(t)

0

l)r ! /omta(r ! ( ).t..w.*r(x)>G(t)”'c’r(” /toom(mxpl)”qdl(x%~~~,d¢(x) di(t), ... di()

1-a

< Fi(z)... F/(2) 1 /°° "X (Gi(t) .- Gi(t)"
dx d {E,...,difﬁ d t,...,dit
o Wi . W@ (0-Dr-D+2q-D—ayt )y W) W) 1 v 1(()) !
22
is valid. In particular, if we put a = %, q = 5 and W(z) = = we obtain (1).
We need the following inequality to proof the converse of the above Theorem 3.1.
* (F(x)\" 1+r r \ [ ¢x)\"
— 7 o, d; > -_— [N 3
() aonao = T () (9) a i (23)
Proof. Suppose M is non-increasing in Corollary 2.5 yields:
< Flr(x) s FiT( ) / —r W za(r=1) alp=1) ) . " )
S Wi@) .. W@ ) W1 LW () ( t Ci(t)...G)di(t),...,di(t) ) di(z),. .., di(x)

T

§/00W1_T(:c)...Wi_T(x)<</O o dl(t),...,di(t)> (/O t“”‘l)><(f(t)...(Z-_T(t)dl(t),...,di(t)>
/ Wi (s )</Ozt“ di (8), (t))T_l/OIt“(T_I) K ) () (@), di(z) di(t),..., di(t)
/O D s ()LL) /toox“*“)“*“ X W (@) W (@) da (2), ..., di(2) di(t),. .., di(t)

1
™

) di(z),. .., di(z)

(1+a)

1 o a(r—1) t2 r r oox(l—a)(r—l)—Qr 1z (x 1 .
< ), ! (Wﬁ@~ﬂT@JQmmg@l B ) B0 O

< Fi(z)... Fi(z)
o Wiz)...Wi(z)

) 1 TG GO .
‘«b+nv44y+m44X17@“14 » B A

di(x),...,di(z) =

(24)
If we put a = £, g = £ and Wi(z),..., W;(z) = z we obtain (2).
Theorem 3.2 :

Let ¢i(z) ... ¢i(z) >0, wi(z)...wi(z)>0, 0<a<l, r>1, ¢>

W(J:):/Oxw(t)dl(t),...,di(t) and F(x):/o (W) (1), .., di(t)

Let ®(x) and ¢(x) be increasing, submultiplicative and convex functions such that ®({(z)) and ¢(w(z)) are
integrable function, then the following holds:

r— n.('r‘ 1)
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2)p(Wi(z)... Wi(z))z' "di(z),. .. di(z) <

\

(25)
<T- @(Cl(x) o Gl@))d(wr (@) wi()z T dy(2), . .., di(2)
for all r < 1.
Proof. If functions ® and ¢ are convex and submultiplicative, we obtain
(Fi(x)... Fi(z ))@(Wl( ). Wiz))z' ™" () —
/0 @)o@) di(z),...,di(x) =
:/O - ) (/ Gl .,di(t)> ¢ (/0 wl(t)...wi(t)dl(t),...,di(t)> di(x),.. . di(x)
R (l/ Gt)...G(t)da(t ,,..,di(t))qﬁ(%/o wl(t),,.wi(t)dl(t),.,.,di(t)) di(),. .., di(z)
( 0 (¢ )o(Ca(t) .. C(t))dl(t),...,di(t)>qb(/Ozwl(t)...wi(t)dl(t),...,di(t)) di(z),...,di(z)
(26)
In view of (5), we have the following:
* (Fi(x)... Fi(x)ep(Wi(z) ... Wi(z))z' ™" - (o

< /OOO . (/O BCL(E) .. Co(E))blwr(t) .wi(t))dt) di(2),...,di()

Since functions ®, ¢, wi(z)...wi(z) and ¢1(z)...i(x) are non-decreasing then the function ®°((1(z) ... ()
and ¢°(w1(x)...w;i(x)) are also non-decreasing and consequently we can applied (7) where p(z) = 1, and by the
inequality (27), we have

/°° O(Fi(z) ... Fi(z)p(Wi(z) ... Wi(z))a' ™"
0 ®(z)¢(x)

8

< [T 200 a0 ) [
= [7 260 60)or (1) 0 (
)..

el AL IR LI

e A | GO O RO R,
Theorem 3.2 : .

Let (1...¢ > 0, Fi...F; and W;...w; are non-decreasing. Let wi...w; > 0, be continuous on (0,00). Let
® > 0 and non-decreasing with a < b < co. If w; ...w; is non-increasing and D( <<I>) is integrable on a < b < oo,

the following inequality is valid.

b Fi(z)...F(x) . (o PG Gilw) - (o
[0 (e i) oo < [0 (S5 ) o) (29)
by convexity ®(z) = z",r > 1 and ® = ¢, the above inequality can be written in the form of
b Fl(l‘)Fz(:L‘) " z (o b Cl(l’)cz(il:) " z (o
[ (T a@saw s [ (SE0E) 4@ ae (30)
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Proof.
/abq’ (%) di(x), ..., di(z) < /:<z> (%) di(@), ..., di(z) (31)
Since w is non-increasing, ® and ¢ are non-decreasing, we have
/:@(%)dl(x),.“,di(x):/:@( e Wz(m)/ c(t)d ()7__.’di(t)>
Lo [ )
’ T 1(z)...G(z x L Gz
/ (fo (wi(t X(sz((t))d1(lf),(..).,di(t))) da(2) < . C )‘wiég))>dl(l’)a---adi(l’)

The next theorem is a generalization of Theorem 3.3 (Jensen, 1906).

Theorem 3.3:

> —

Let ®(z) > 0 be a twice differentiable function on (0, c0), convex, submultiplicative and w(0) = 0. Suppose
geNandr>1. If xQTW is integrable , then the following inequality:

® e (Fi(r)... Fi(x)) e LT G G,

/0 T (2 di(x),...,di( )<p71 ; (@) di(x),...,di(x) (33)
holds.
Proof.

/Ooo o2z (x7) (2) @ (L
[
/O“’q) o ([ @

)
/OOo (x))rﬁ;x) (/too m_pd1($)7~~~,di(x)> di(t),...,di(t) <

= 7‘71/0 x?” (¢ (x) ... G(m))di(x), ..., di(z) d

N S—
Y
3
+
[ V)

(34)
Theorem 3.4

Let 0 < ¢, non-decreasing on (0, 00) and define F and W as above. If 0 < w is a non-decreasing on (0,00).® > 0
and non-decreasing with 0 < a < b < co. If the function ¢({(z)w(z)) is integrable on [a,b], then

b i\ 1(x)... i\ b
/ <1><F1(‘”)“'F1( )m‘f/( ). Wi )>d1(ac),...,di(ac)§/ B (C1(2) . Co(@)) (@1 () - wr (@) da (@), .., di ()
(35)

Proof. The result is obtained from (5) in connection with Chebyshev integral inequality, convexity of a functions
and by considering the function p(z) = 1 for all = € [a, b], see (Anthonio and Rauf, 2021) we obtain.
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= [e (L[ @O ca@ao] [ @o . wono..ao]ae..aw)
<[ (=[] a0 ao][[ @0 conmo ..o aw.....aw)

= [ (L[ @)@ a0 0] o))

= [0 (OO s @) )] o), )

[ o (GG [ 0] o )

T

b i\ 1\r)... i\ b
/ @(Fm...m e ))dmx),...,di(a:m/ S ((Gi() .- G (@r(t) ... wi(D)) da (), ..., di(x)
(36)

4 Some New Refined Hardy-type Integral Inequalities

The new refined weighted Hardy-type Integral Inequalities are established as our main results:
Theorem 4.1 :

Let r > 1,k > 1,0 < b < o0, and let (1(¢)...¢i(t) be absolutely continuous function and locally integrable on
(0,b) such that 0 < [Yz" % ([(z)...¢ (2)di(),...,di(z) < oo.

(a) If r > 1, then

/Obxik </Oz Cr(t) ... CF(t)da(t), ...,di(t)>Td1(a:)7--~,di($)+

_ b b 1—7 x k—1 k—1
k=1 f {k ( ) .C{(t)fi/ocf(t)...C{(t)dl(t),...,di(t) T A @), dy() £

<(2) [(-[7) o dwecwn. i)

(b) If 0 < r < 1, then the above inequality holds in the reserved direction.

(37)

The classical Hardy inequality (1) for & > 1 can be refined by adding a second term on the left hand side. We
have the following inequality:

/waik (/Ozgf(t)...(f(t)dl(t),.. ,di(t))zdl( ) di2)+
S (] oo oo ) s

x 22T (), di() T ), . da(t)

_ <kf1>2/0°° (1_ (%);> 2% 2).. . C(x) di(2), ..., di(z)

46



Oluwatoyin et. al.; Asian J. Math. Comp. Res., vol. 82, no. 1, pp. 36-51, 2025; Article no.AJOMCOR.12625

Proof. . By combining Corollary 2.1, ®(z) = 2" with » > 1 and u(z) = 1, yields
/b (l / gf(t)...Cf(t))dl(t),...,di(t)>TM-ﬁ-
/ / (41 co-3 [ G0 coao.. .,di<t>)r @) dil@ gy (39)

S/O(l—%) (). () D) di@)

T

with @ = b7 x—Cl(tk S1),...,G(tF 1)z Tand y = 251 and ¢ = t*1. Therefore
/ <l/ Cl(tﬁ),...,Ci(tﬁ)tril—ldl(t),...,di(t)) MJF

/ (Cl (= ""’Q(“‘%l)ﬂfﬁfl—l xcl(tﬁ),...,Ci(tﬁ)tﬁfldt)r h@), - dil@) gy

T Jo

( 1) 0 ( /0 Q) Gilg)d ()...,di(q)>rw+
() .

R ek BT Rt

S/Oa (1-3) e 1>,--.,c:(tﬁ)xr<#7nw

which implies

(k;l)“’/ (/ ¢i(q), ..., ¢lq)d ()...,di(q)>rd1(y),...,di(y)+ T
( ) //( (@ Gila)a' T = e Gila)d (>...,di<q)> x

k-1
><y o dl( )s - Yy)q T 1d1(q),...,di(q)

:<’“; )H/ (/ (@) Cla)d ()...7di(q)>rd1(y),...7di(y)+ (40)
(5 )+//(k @i (D) - [ 6 ion <>...,d¢<q>)rx

_pl=k k=1 _
xy" T dy qr 1d1(q), .oy di(q)

<(EN (197 v rae a0

(b) The proof of 0 < p < 1 is similar but the signs of the inequalities are reserved.

Remark 4.1:

Putting u1,...,u; = 1 and v the weight function is equal to

1-%, b<o
1,b< 0
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Thus, for b < co and a = 0 (39) becomes

/Ob (% / Cl(t)...Ci(t)d1(t)...di(t)>TM+
[ ] (@0 s [[a0- con..a0) 225 D00 aw w040

b (o
S/O(Cl(t).-.@'(t))r di(@).. difz) and when b= oo a=0

/OOO (i /OI Cl(t)...Q(t)d1(t)...di(t)>r MJF
T /tb (6060~ ["a0--c0m0..aw) D). ) 600

Theorem 4.2 :

Let r > 1,k > 1,0 < b < oo and (i(t) ...¢(¢) be absolutely continuous function and locally integrable on (b, o)
such that 0 < fbo =P ((x). . ¢ (x)da, . .., de < oo
(¢) If » > 1, then

/ (/ C1 )dtl,...,dti)rdxl,...,daci—l—
k—1 [ r t "
. b<k_1|:$:| C1( LG **/ Gt dt1,...,dti>x
<(+5) | (1[2] ) £ ) ) dy

(d) If 0 < r < 1, then the above inequality holds in the reserved direction.

..,d:L'i. t

(41)

The classical Hardy inequality (1.1) for k < 1 can be refined by adding a second term on the left hand side. In
particular, for b = 0 and r = 2 we have the following inequality:

2
/ (/ Cl )dtl,...,dti) dri,...,dv;+

2
_ oo rt 1415k _
+¥ /[12k(t) Cl( Gt 7*/ Gt (O)dtr, ... dt: |22 T dey, . dei. £ b,
o Jo - €
_ 2 N [® ok 2 2 '
=— x CGi(x)...¢ (z) daa,. .., dx;
1-k o
(42)
Proof. Corollary 2.1, ®(z) = z" with » > 2 and u(z) = 1 yields
dt,...,d "dxy, ..., dx;
/ ( / <1 ) 1 ) X1 {E+
T
dt,...,dtl " dti,...,dt;
-|—/b / <C1(t) —2?/ <1 t ! 72 ) dCL‘17...,dZEi IT (43)
b T dzxy,...,dx;
< _ =z r (T b S Reted
<[ (1-7) d@.w@
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k

By
q= tTF implies

/ (x/ gl(tﬁ),...,Q(tlik)tffldtl’"2"dti> doy,... do |
b © t x

oo t %) r )
+/ /(gl(tm),...,g(tm)xﬁ*—x/ <1(tﬂ),...,gi(tﬂ)tﬂ*1dt> das, ..., dp; P dt

E
:( I A I e

1— k

—k r+1 roco pq 1-k oo T

+ / / "'aCl( ) " 7:8/77 Cl(q)77C'L(Q)dq177dql L1y dxl q o dqlv"'7dqi
b 1- k 2 T2F

< 1- )senes

A (=

that is

I AN Sl A r
r / 7 Cl( ) ,C@(Q)d(]l,,d(]z dy177dy1+

L (e

><y T dyl,.. dqu v dql,...,dqi

N poo y T
r+2 1—k 1—k [® r
( — > / /( ---,Ci(lJ)qHT—yHT/y Cl(Q),...,Ci(Q)dm,---,dqi) X

><y T dyl,.. dqu B 1dq1,...,dq¢

E—1\""'[> 1 -
f< r ) /0 y?(/o Cl(Q)7...,Cz'(q)dqh...,dqi) dyi,...,dyi+

k 1 2 pee K r q 1+¥ 1 oo T
+( > / /(k_lCl(Q)7...,Ci(‘1) [;} _Z/y C1(q),...7Ci(q)dq1,...7dqi> «

><y T dy1,.‘ ,dy; q T ldqh... dg;

< (1;k) I (1— [z]lzvyrkd(y»..,g(y)dyl,...,dw O

This completes the proof of the Theorem.

=G (tﬁ), .. A7§i(tﬁ)xﬁ. Thereafter, by using the substitution y = zT°F and

(t1 k) T(11k+1)d$17"'7d$i
x

H\Q

Ctlk

)

"’CZ( ) 177

~~7<i(Q)dQ> X

(44)

(d) The inequalities are reversed in the case of 0 < p < 1.

5 Conclusion

This work is a modification of Hardy-type inequalities involving superquadratic and subquadratic functions of
independent interest by means of convexity, Fubinis theorem and some fairly analytic methods. Results obtained
are extension of earlier efforts in the literature.
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