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ABSTRACT 
 

The focus of this work is to consider composite numerical techniques for the approximation of SDEs 
with nonlinear coefficients in the drift and diffusion terms. SDEs, crucial for modeling systems with 
stochastic components, contain nonlinear terms that cause analytical solvability, numerical stiffness, 
and sensitivity to noise. These difficulties pose a problem for traditional techniques such as Euler-
Maruyama or Milstein schemes, specifically in stiff or very nonlinear systems. Accompanying exact 
methods are numerical methods that include a deterministic synthesis of drift terms and a stochastic 
interpolation of diffusion terms with the purpose of increasing precision and stability and optimizing 
used computing time. Discussed approaches include implicit-explicit (IMEX) schemes, spectral 
collocation methods, and machine learning-assisted techniques. IMEX methods handle stiffness in 
nonlinear drift terms implicitly, while explicitly handling stochastic diffusion. Spectral-collocation 

Original Research Article 

https://doi.org/10.9734/ajrcos/2025/v18i1553
https://www.sdiarticle5.com/review-history/129682


 
 
 
 

Oladayo; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 124-132, 2025; Article no.AJRCOS.129682 
 
 

 
125 

 

methods utilize high-order polynomial approximations for accuracy in discretization where solutions 
are smooth and defined in a bounded domain. The combination of these techniques and machine 
learning extends SDE analysis and concentrates on SDE nonlinearities as well as adaptive solution 
strategies. They find use in every area of discipline, such as stochastic volatility models in finance, 
population dynamics in biology, and turbulent fluid flows in engineering. Simulation results show 
that hybrid schemes outperform other methods in terms of accuracy, stability, and computational 
expense. This work outlines how the integration of the suggested methods can overcome the 
shortcomings of the classic approaches so as to enable progression in solving complex, high-
dimensional, and nonlinear stochastic problems. Subsequent studies will continue to investigate 
additional adaptive frameworks and more domain-specific and machine learning-based 
improvements to expand the spectrum of hybrid use. 
 

 
Keywords: Multiple numerical schemes; stochastic calculus; nonlinear randomness in drift and 

diffusion coefficients; implicit-explicit time discretizations; reduced computational load. 
 

1. INTRODUCTION 
 
These Stochastic Differential Equations (SDEs) 
for use in systems which are aggravated by 
randomness have found a place in numerous 
disciplines ranging from finance to physics, 
biology, and engineering (Brigo & Mercurio, 
2001). These equations generalize ordinary 
differential equations (ODEs) for modeling the 
behavior of systems with random perturbations 
interpreted as stochastic noise normally modeled 
by the Wiener process. The general form of an 
SDE is given as: 
 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝑔(𝑋𝑡 , 𝑡)𝑑𝑊𝑡 ,         1.1 

 
Where 𝑋𝑡  the state of the system at time t is, 

𝑓(𝑋𝑡 , 𝑡)  denotes a deterministic part of the 
system’s behavior known as the drift term, 
𝑔(𝑋𝑡 , 𝑡)  is known as the diffusion term.m. The 
notation used is 𝑊𝑡  a Wiener process or a 
Brownian motion. The deterministic part is 
usually described by drift and the stochastic one 
by the diffusion term. This formulation enables 
SDEs to model systems which changes from 
deterministic as well as random forces, are ideal 
for modeling real world processes where 
randomness is a parameter (Kloeden & Platen, 
1992). 

 
2. THE CHALLENGE OF NONLINEAR 

DRIFT AND DIFFUSION TERMS 
 
Despite the fact that linear SDEs can sometimes 
be solved explicity or to be approximated quite 
well, many real-life systems involve nonlinear 
drift and diffusion coefficients, and this greatly 
distorts both the possibility of the analysis of the 
SDEs, and their numerical solution (Crouse, 
2015). Nonlinearities in the drift function 𝑓(𝑋𝑡 , 𝑡) 

or the diffusion function 𝑔(𝑋𝑡 , 𝑡) can lead to 
complex behaviors such as chaotic dynamics, 
multiple equilibria, or sensitivity to initial 
conditions. For instance, nonlinear SDEs appear 
frequently in models of turbulent flows (Majda, 
Timofeyev, & Vanden-Eijnden, 2003), 
biochemical systems (Erban, Chapman, & Maini, 
2007), and financial markets (Black & Scholes, 
1973). 
 

The presence of nonlinear terms introduces 
several key challenges: 
 

• Analytical intractability: In most cases, 
exact solutions for SDEs with nonlinear 
terms do not exist, necessitating the use of 
numerical approximation methods 
(Higham, 2001). 

• Instabilities in numerical methods: 
Standard numerical methods such as the 
Euler-Maruyama or Milstein schemes may 
become unstable or provide inaccurate 
results when applied to highly nonlinear 
SDEs, particularly if the step size is not 
carefully chosen (Tocino & Vigo-Aguiar, 
2002). 

• Sensitivity to noise: Nonlinear diffusion 
terms can cause the system to exhibit 
sensitive responses to stochastic 
fluctuations, making it difficult to capture 
the correct behavior using traditional 
methods (Erban & Chapman, 2020). 

 

These difficulties highlight the need for 
specialized numerical methods that can 
accurately and efficiently solve nonlinear SDEs. 
 

2.1 Hybrid Methods: An Effective 
Approach 

 

In order to overcome these difficulties, authors 
utilized methods based on the integration of the 



 
 
 
 

Oladayo; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 124-132, 2025; Article no.AJRCOS.129682 
 
 

 
126 

 

constituents from different numerical methods 
with the aim to enhance the accuracy, stability, 
and efficiency of the numerical realization of 
SDEs with nonlinear coefficients of drift and 
diffusion (Gatheral, 2011). The term hybrid is 
used for the association between the 
deterministic ordinary differential equation 
solvers used for the management of the drift 
component as well as the stochastic integration 
methodologies used for the handling of the 
stochastic part of the equation, symbolized by 
the diffusion coefficient (Lord et al., 2014). Hybrid 
methods are considered to be even more 
attractive because certain numerical strategies 
used within this framework can be adjusted in the 
way the different components of the SDE are 
solved, thus providing great flexibility when 
solving complex, nonlinear problems. Abdulle 
and Pavliotis (2012). 
 
Several motivations drive the development of 
hybrid methods: 
 

1. Improved accuracy: Meanwhile, the 
different approximation to the drift and 
noise terms by using higher-order 
deterministic solvers, such as Runge–
Kutta schemes, for the drift term and by 
using special stochastic integrators such 
as the Milstein method, are expected to 
enhance the accuracy of the solution, 
especially for stiff or nonlinear problems 
(Kloeden and Platen, 1992). 

2. Stability in stiff systems: Some of the 
difficulties found in nonlinear stochastic 
differential equations include stiffness due 
to responses of the given perturbation 
being large in the presence of small 
perturbation. Hybrid methods overcome 
this in that while the deterministic part of 
the equation, which may be stiff, is solved 
using implicit solvers, the stochastic part, 
which is prone to bias, is solved using 
explicit solvers (Higham, 2001). 

3. Efficiency: Hybrid schemes can also 
adapt the time step depending on the local 
solution behavior, thus giving more 
resolution to rapidly oscillating regions 
while giving coarser steps in smoothly 
varying ones: this reduces computational 
cost further while maintaining accuracy, 
Abdulle, and Pavliotis, (2012). 

4. Adaptivity to system behavior: Such 
hybrid methods can also be classified as 
adaptive in the sense that, depending on 
the prevailing conditions, they switch from 
one scheme to another if the system is 

dominated by drift, diffusion, or both. This 
is possible because the plant can be made 
to realize higher performance levels when 
operating at different SDEs (Saito & Mitsui, 
1996). 

 

2.2 Existing Approaches to Hybrid 
Methods 

 

Several approaches to hybrid methods for SDEs 
have been proposed in the literature. For 
example, partitioned methods, which separate 
the drift and diffusion terms and apply different 
numerical solvers to each, have proven effective 
in reducing errors and improving stability (Sauer, 
2017). Similarly, semi-implicit schemes, where 
an implicit method is used for the drift term and 
an explicit method for the diffusion term, have 
been developed to handle stiffness and 
nonlinearities in financial and engineering models 
(Lord, Koekkoek, & Van Dijk, 2010). 
 

Another promising direction involves multiscale 
hybrid methods, which address systems where 
the drift and diffusion terms operate on different 
timescales. These methods allow for accurate 
resolution of fast stochastic fluctuations without 
requiring excessively small time steps throughout 
the entire integration, thus saving computational 
effort (Chou, (1991)). 
 

2.3 Scope and Purpose of this Study 
 

This work aims to advance the understanding 
and application of hybrid numerical methods for 
solving SDEs with nonlinear drift and diffusion 
terms. Specifically, we focus on developing 
methods that balance accuracy, stability, and 
computational efficiency in the presence of 
strong nonlinearities. We will investigate the 
performance of these methods through both 
theoretical analysis (convergence, stability) and 
practical applications, drawing examples from 
fields such as mathematical finance, 
epidemiology, and fluid dynamics. Numerical 
experiments will demonstrate the effectiveness of 
hybrid methods in capturing the complex 
dynamics of nonlinear SDEs, highlighting their 
potential for broader application in science and 
engineering. 
 

3.  HYBRID METHODS FOR NONLINEAR 
SDES 

 

3.1 Implicit-Explicit (IMEX) Methods 
 

IMEX schemes combine explicit and implicit 
numerical integration strategies. In the context of 
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SDEs, the explicit part can be applied to the 
stochastic term, which generally benefits from a 
more straightforward implementation, while the 
implicit part is applied to the nonlinear drift term. 
This combination can help handle stiffness in the 
system, as implicit methods are known for their 
stability when applied to stiff problems. 
Consider the SDE: 
 

𝑑𝑋𝑡 =  𝑓(𝑋𝑡)𝑑𝑡 + 𝑔(𝑋𝑡)𝑑𝑊𝑡                   3.1 
 
In an IMEX approach, the drift 𝑓(𝑋𝑡) is treated 
implicitly, which ensures stability in the 
deterministic part, while the diffusion term 
𝑔(𝑋𝑡)𝑑𝑊𝑡  is treated explicitly to allow efficient 

simulation of the stochastic part. A time step Δ𝑡 
in such a method can be written as: 
 

𝑋𝑛+1 =  𝑋𝑛 + △ 𝑡𝑓(𝑋𝑛+1) + 𝑔(𝑋𝑛) △ 𝑊𝑛  3.2 
 
where △ 𝑊𝑛  represents the Wiener increment 

over the time interval [𝑡𝑛, 𝑡𝑛+1].  
 
The hybrid IMEX method can efficiently handle 
stiff systems and nonlinearities in the drift term 
without significantly increasing the computational 
cost. 
 

3.2  Spectral Methods and Collocation 
Techniques 

 
Spectral methods, particularly those based on 
Chebyshev polynomials, offer high accuracy 
for smooth solutions over bounded domains. 
These methods expand the solution in terms of 
orthogonal polynomials and compute the solution 
coefficients by solving a system of algebraic 
equations. When applied to SDEs, collocation 
methods based on spectral decomposition 
provide a highly accurate discretization of the 
spatial domain. 
 
For an SDE of the form: 
 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡,𝑡)𝑑𝑡 + 𝑔(𝑋𝑡,𝑡)𝑑𝑊𝑡    3.3 

 
The collocation method involves discretizing the 
drift and diffusion terms using Chebyshev points. 
The resulting system of algebraic equations is 
then solved using a hybrid approach where 
stochastic integrators (e.g., Euler-Maruyama) are 
applied to the stochastic terms, while 
deterministic spectral methods handle the 
nonlinearities in the drift term. This combination 
achieves a balance between accuracy and 
computational efficiency. 

3.3  Machine Learning-Augmented Hybrid 
Methods 

 

Recent advancements in machine learning, 
particularly neural networks and Gaussian 
processes, have been leveraged to enhance 
numerical methods for SDEs. In hybrid methods, 
machine learning can be used to model complex 
nonlinearities in the drift and diffusion terms, 
augmenting traditional numerical techniques. 
 

A promising approach involves training a neural 
network to approximate the solution of an SDE 
over time. Once trained, the network can be 
incorporated into a hybrid framework, where it 
assists with solving the drift and diffusion terms, 
while classical stochastic solvers handle the 
noise term. 
 

4. APPLICATIONS 
 

4.1 Stochastic Volatility Models in 
Finance 

 

A typical example of a nonlinear SDE in finance 
is the Heston model for stochastic volatility. The 
model is governed by: 
 

𝑑𝑆𝑡 =  𝜇𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
1,    𝑑𝑉𝑡 =  𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 +  𝜎√𝑣

𝑡
𝑑𝑊𝑡

2 
                                                           4.1 
 

where 𝑆𝑡 represents the asset price, and 𝑉𝑡 is the 

variance process. The two Wiener processes 𝑊𝑡
1 

and 𝑊𝑡
2 are correlated. The hybrid IMEX method 

is particularly effective here, as the drift term for 
𝑉𝑡  is stiff due to the presence of the mean-
reverting component 𝜅(𝜃 − 𝑉𝑡). 
 

4.2 Numerical Methods for Stochastic 
Differential Equation 

 

Monte Carlo-Based Parallel Hybrid Methods: 
 

• The Combination of hybrid numerical 
schemes with parallel computation helps to 
improve scalability. 

• The use of Monte Carlo simulations helps 
to approximate distributions of SDE 
solutions. 

• Parallelize the hybrid schemes across 
multiple processors. 

 

4.3 Monte Carlo-Based Parallel Hybrid 
Methods: A Detailed Overview 

 

Monte Carlo-based parallel hybrid methods 
combine the strengths of Monte Carlo 
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simulations with hybrid numerical schemes and 
parallel computation to efficiently solve stochastic 
differential equations (SDEs) with nonlinear drift 
and diffusion terms. This approach is particularly 
well-suited for high-dimensional, complex 
systems where traditional numerical methods 
may falter due to computational costs or stability 
issues. 
 

Monte Carlo Simulations: 
 

i. Monte Carlo (MC) methods are a 
probabilistic approach used to approximate 
solutions to SDEs by simulating multiple 
independent sample paths of the process. 

ii. Each sample path is generated by 
discretizing the SDE using a numerical 
scheme (e.g., Euler-Maruyama, hybrid 
IMEX, or spectral methods). 

iii. The final solution is estimated by 
averaging the outcomes of these simulated 
paths:  

 

E[𝑋(t)]  ≈
1

𝑁
 ∑ 𝑋𝑖(𝑡)𝑁

𝑖=1          4.2 

 

where N is the number of sample paths and 𝑋𝑖(𝑡) 
represents the solution of the i-th path at time t. 

 

Hybrid Numerical Schemes: 
 

i. Numerical schemes like implicit-explicit 
(IMEX) methods or spectral-collocation 
techniques are used to discretize each 
sample path. 

ii. These hybrid methods provide a balance 
of stability, accuracy, and efficiency, 
particularly for stiff or nonlinear systems. 

iii. The choice of the hybrid scheme depends 
on the characteristics of the SDE (e.g., 
stiffness, smoothness, and nonlinearity). 

4.4 Implementation Steps 
 

Step 1: Problem Formulation 
 

• Define the SDE to be solved:  
 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡)𝑑𝑡 + 𝑔(𝑋𝑡)𝑑𝑊𝑡   4.3 
 

where 𝑓(𝑋𝑡) represents the drift term, 𝑔(𝑋𝑡)  the 
diffusion term, and 𝑊𝑡 is a Wiener process. 
 

Step 2: Discretization 
 

• Choose a hybrid numerical scheme (e.g., 
IMEX or spectral-collocation) to discretize 
the SDE. 

• For a time step 𝛥𝑡, compute:  
𝑋𝑛+1 =  𝑋𝑛 +  𝑓(𝑋𝑛+1)∆𝑡 + 𝑔(𝑋𝑛)∆𝑊𝑛  4.4 
 

Step 3: Monte Carlo Sampling 
 

• Generate N independent realizations of the 
stochastic process using the chosen 
numerical scheme. 

• Compute the Wiener increments 𝛥𝑊𝑛  for 
each path as:  

 

𝛥𝑊𝑛 =  √∆𝑡 𝑍                       4.5 
 

where 𝑍 ∼ 𝑁(0,1)  are standard normal 
random variables. 
 

Step 4: Parallel Computation 
 

• Divide the N sample paths across multiple 
processors or GPU cores. 

• Each processor independently computes 
the evolution of assigned sample paths 
over the time interval [0,T]. 

 

 
 

Fig. 1. Sample paths for the state variables from literature 
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4.5 These are Sample Paths for the State 
Variables from Literature 

 

4.5.1 Wiener Process 
 

A Wiener Process is a Gaussian Process 𝑊𝑡 
satisfying the following: 
 

i. 𝑊0 = 0,  
ii. 𝑊𝑡 = ℱ𝑡 − 𝑀𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒with 𝐸(𝑊𝑡) < ∞∀𝑡 ≥ 0 
iii. 𝐸[𝑊𝑡 − 𝑊𝑠] = 𝑡 − 𝑠 , 𝑠 ≤ 𝑡, then 𝑊𝑡 is 

Martingale. 
 

Well – posed nonlinear stochastic differential 
equations  : A well-posed stochastic differential 
equation (SDE) is a problem that is well-formed, 
especially one for which, under appropriate 
conditions, the solution can be shown to exist, to 
be unique, and to vary continuously with the 
perturbation of the data. If these three conditions 
do not hold, the problem is said to be ill-posed, 
although it may still be soluble. 
 

An SDE is stable when the problem is not overly 
sensitive to marginal perturbations in the 
underlying data, generally meaning that the 
output should be continuous in some sense as a 
function of the perturbation. By perturbation, we 

mean when a problem changes (usually slightly) 
in the values of some of the underlying 
parameters, made to obtain the desired solution 
or to study the stability of a given solution 
(Kluppelberg and Kuhn, 2002). 
 
The addition of intrinsic effects in differential 
equations led to two different classes of 
equations, for which the solution exists for both 
differential and non-differential trajectories, 
respectively. However, they are analyzed using 
different techniques. 

 
5. MATERIALS AND METHODS 
 

5.1 Numerical Simulations 
 
5.1.1 Solves an SDE using a hybrid numerical 

method for nonlinear drift and diffusion 
 
Using the Data Frame in the Table 1 below that 
contains the time points, mean, and variance, 
use to plot the graphs below.  
 
Using the Data Frame in the Table 2 below that 
contains the time points, mean, and variance, 
use to plot the graphs below 

 
Table 1. Hybrid numerical method for nonlinear drift and diffusion 

 

S/n Time Mean Variance 

0 0.00 0.500000 0.000000 
1 0.01 0.498270 0.000734 
2 0.02 0.501259 0.001467 
3 0.03 0.501871 0.002303 
4 0.04 0.500725 0.003055 

 

 
 

Fig. 2. Sample paths of the SDE (Scheme 1) 
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Fig. 3. Mean and variance of the SDE solution (Scheme 1) 
 

Table 2. Time points, mean, and variance 
 

S/n Time Mean Variance 

0 0.00 0.500000 0.000000 
1 0.01 0.501358 0.000896 
2 0.02 0.502748 0.001687 
3 0.03 0.503313 0.002456 
4 0.04 0.502878 0.003238 

 

 
 

Fig. 4. Sample paths of the SDE (Scheme 2) 
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Fig. 5. Mean and variance of the SDE solution (Scheme 2) 
 

5. CONCLUSION 
 
This research aimed at the synthesis and 
utilization of combined approximate analytical 
numerical methods for SDEs with nonlinear 
coefficients for drift and diffusion, considering 
major issues of accuracy, stability and 
computational cost. The use of both deterministic 
and stochastic solvers that I have described in 
this paper presents a viable solution to the 
challenges in SDEs that are caused by 
nonlinearities which are an issue in fields such as 
finance, biology and engineering. 

 
The investigation showed how methods like the 
implicit-explicit (IMEX) and spectral/ collocation 
methods give better ODE solutions of stiff 
systems and dynamics. Through the presented 
adaptive mechanisms and incorporation of 
additional tools in forms of learning such as 
machine learning, it was seen that the use of 
hybrid methods did enable the techniques to 
adjust locally and maintain the best of both 
worlds in terms of accuracies and computation 
times. 

 
These observations were supported by numerical 
simulations signifying that these methods are 
suitable for a wide range of applications, 
including stochastic volatility models in Matlab for 
finance, and spatial population dynamics in 
biology. Lastly, considering the presented natural 
extensions of machine learning into hybrid 
frameworks and appropriations, one can predict 
further progress in computational mathematics 
as an ability to effectively manage high-
dimensional and/or strongly nonlinear problems 
increases. 

6. FUTURE DIRECTIONS 
 
There being existing literature on the subject of 
hybrid numerical schemes, further studies should 
aim at creating more refined hybrid programmes 
able to adjust their numerical approaches 
depending on the condition of the system. It is 
expected that incorporation of the machine 
learning and deep learning to the hybrid methods 
will improve its ability to solve compound and 
multiple dimensional SDEs. Furthermore, 
expanding the use of hybrids to new forms of 
stochastic SCR’s and domain-specific 
applications of all methods will expand the 
applicability of the research in science and 
engineering. 
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