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Abstract

This paper is concerned with the blow-up phenomena for a type of parabolic equations with
weighted nonlinear source

(b(u))t = div(|∇u|p−2∇u) + f(x, u), x ∈ Ω, t > 0,
u(x, t) = 0 or ∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = g(x) ≥ 0, x ∈ Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain. Through constructing some suitable

auxiliary functions and using the first-order differential inequality technique, we obtain the bounds

for the blow-up time and the estimates of the blow-up rate of the solution to the problem.
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1 Introduction and the Main Results

In this paper, we are concerned with the blow-up phenomenon of the following problem:
(b(u))t = div(|∇u|p−2∇u) + f(x, u), x ∈ Ω, t > 0,
u(x, t) = 0 or ∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = g(x) ≥ 0, x ∈ Ω,
(1.1)

where ∂
∂n

represents the outward normal derivative on ∂Ω, g(x) is the initial value, 1 < p ≤
2. Set R+ := (0,+∞). We assume, throughout the work, that (F1):f(x, s) is a nonnegative
C1(Ω × [0,+∞)) function, and (F2):

∫ +∞
s

dη
f(·,η)

is bounded for s > 0, b is a C2(R+) function

satisfying 1 ≤ b′m ≤ b′(s) ≤ b′M , b′′(s) ≤ 0 for all s > 0.

The phenomena of the blow-up for nonlinear parabolic equations have been investigated extensively
by many authors (see [1-7] and the referen-ces therein). Some special cases of (1.1) have been
studied already, such as model problem (1.2) which often occurs in many mathematical models
of applied science, such as chemical reactions, heat transfer, population dynamic and electro-
rheological fluids(see [8,9] and the references therein). There are many topics of interest on these
models, for example, the conditi-ons of blow-up and global existence of the solution etc, we refer the
reader to [10,11,12-14,15] and the references therein. In many situations, the techniques used in the
study of blow-up phenomena lead to the bounds for the blow-up time when blow-up occurs. Payne,
Schaefer [16] obtained the lower bounds for blow-up time in parabolic problems under Neumann
boundary conditions. Later, many authors got the bounds for the blow-up time of the solution to
some models (see [17,18,19,20] and the references therein). In applications, the lower bound seems
to be more important, due to the explosive nature of the solution. And there are many results
about this aspect, we can refer [21],[22],[23-26] and the references therein. Many approa-ches have
been developed in discussing the bounds for the blow-up time of the solution to various parabolic
problems. However, the blow-up rate of the solution to the problem with general nonlinearity
is unknown. K.Baghaei, M. B. Ghaemi and M. Hesaaraki [27] studied the following semi-linear
parabolic problem with a variable source: ut = ∆u+ up(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.2)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary. A lower bound for the blow-up
time was obtained when blow-up occurs for 1 < p− ≤ p+ < +∞. Wu, Guo, Gao [28] got an upper
bound for the blow-up time of the solution to (1.2) by constructing a new control function and
applying suitable embedding theorems. Under the conditions 1 < p− ≤ p+ ≤ n+2

n−2
, certain initial

data and positive initial energy, Wang, He [29] also obtained an upper bound for the blow-up time
of the solution to (1.2). The following problem was investigated by Song and Lv in [30]:

ut = ∆u+ a(x)f(u), x ∈ Ω, t > 0,
u(x, t) = 0 or ∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = g(x) ≥ 0, x ∈ Ω,
(1.3)

which often appears in combustion theories and engineering application. In the model, Ω ⊂
RN (N ≥ 3) is a smooth bounded domain. By using the first-order differential inequality technique,
the bounds for blow-up time of the solution to (1.3) were obtained. In addition, the estimates of the
blow-up rate were also obtained. In some special case, the authors got the exact values of blow-up
rate and blow-up time.

In this paper, through constructing auxiliary functionsA(t), B(t) and using the first-order differential
inequality technique, we investigate the bounds for blow-up time and blow-up rate of the solution
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to the problem (1.1). In section 2, the lower bounds for the blow-up time and blow-up rate of the
solution to (1.1) are specified under different assumptions on the function f . In section 3, the upper
bounds for blow-up time and blow-up rate are obtained under some appropriate assumptions on
the functions f and g. A remark and some examples will be given in section 4. Our results extend
and supplement those obtained in [27-29]-[30].

The following conditions will be required in our results:

(F3) There exist positive constants C1, C2, M, k, a nonnegative constant r and a positive function
m(x) ∈ C(Ω;R+) satisfy 0 ≤ r ≤ 1, 1−r

M
< m− := infx∈Ω m(x) ≤ m(x) ≤ m+ := supx∈Ω m(x) ≤

k + 1 such that

f(x, s) ≤ C1 + C2s
r(

∫
Ω

sm(x)dx)M , for all s ≥ 0;

(F4) There exist positive constants C3, C4, k and a positive function m(x) ∈ C(Ω;R+) satisfy
3
4
< m− ≤ m(x) ≤ m+ <∞, k > max{(n− 1)(4m+ − 3), 1} such that

f(x, s) ≤ C3 + C4s
m(x);

(F5) There exist positive constant α such that

sf(x, s) ≥ 2(1 + α)F (x, s),

where F (x, s) =
∫ s

0
f(x, ζ)dζ;

(G1) For 1 < p ≤ 2, ∫
Ω

|∇g|pdx ≤ p
∫

Ω

F (x, g)dx.

2 Lower Bounds for the Blow-up Time of the Solution

In this section, we will study the lower bound for the blow-up time and blow-up rate of the solution
to (1.1) under different assumptions on the function f . The following auxiliary functions are used:

G(s) = (k + 1)

∫ s

0

ηkb′(η)dη, A(t) =

∫
Ω

G(u(x, t))dx, (2.1)

where k is a positive constant.

Theorem 2.1. Let u be a nonnegative solution of (1.1) subject to Dirichlet (or Neumann) boundary
condition, A(t) be defined as (2.1). Assume that f satisfies (F1), (F2) and (F3), then the blow-up
time t∗ is bounded from below by

t∗ ≥
∫ +∞

A(0)

dη

K1ηr1 +K2ηr2(1 + ηr3)M
.

Moreover, we have the following blow-up rate estimate

‖u(·, t)‖Lk+1 ≥ S
1
k+1
1 (t∗ − t)−

1
r+m+M−1 ,

where K1, K2, r1, r2, r3 and S1 are positive constants which will be determined later.
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Proof. Applying the divergence theorem and taking into account assumption (F3), we obtain

A′(t) =
∫

Ω
G′(u(x, t))utdx

= (k + 1)
∫

Ω
ukb′(u)utdx

= (k + 1)
∫

Ω
uk[div(|∇u|p−2∇u) + f(x, u)]dx

= −k(k + 1)
∫

Ω
uk−1|∇u|pdx+ (k + 1)

∫
Ω
ukf(x, u)dx

≤ C1(k + 1)
∫

Ω
ukdx+ C2(k + 1)

∫
Ω
uk+rdx(

∫
Ω
um(x)dx)M .

(2.2)

For each t > 0, we divide Ω into two sets,

Ω{<1} = {x ∈ Ω : u(x, t) < 1}, Ω{≥1} = {x ∈ Ω : u(x, t) ≥ 1}.
Now, applying Hölder inequality, we have∫

Ω

uk+rdx ≤ |Ω|
1−r
k+1 (

∫
Ω

uk+1dx)
k+r
k+1 , (2.3)

and ∫
Ω
um(x)dx ≤

∫
Ω{<1}

um−dx+
∫

Ω{≥1}
um+dx

≤
∫

Ω
um−dx+

∫
Ω
um+dx

≤ (
∫

Ω
uk+1dx)

m−
k+1 |Ω|1−

m−
k+1 + (

∫
Ω
uk+1dx)

m+
k+1 |Ω|1−

m+
k+1 .

(2.4)

Substituting (2.3), (2.4) into (2.2), we obtain

A′(t) ≤ C1(k + 1)|Ω|
1
k+1 (

∫
Ω
uk+1dx)

k
k+1 + C2(k + 1)|Ω|

1−r
k+1 (

∫
Ω
uk+1dx)

k+r
k+1

[(
∫

Ω
uk+1dx)

m−
k+1 |Ω|1−

m−
k+1 + (

∫
Ω
uk+1dx)

m+
k+1 |Ω|1−

m+
k+1 ]M

≤ K1(
∫

Ω
uk+1dx)

k
k+1 +K2(

∫
Ω
uk+1dx)

k+r+m−M
k+1 [1 + (

∫
Ω
uk+1dx)

m+−m−
k+1 ]M ,

(2.5)

where

K1 = C1(k + 1)|Ω|
1
k+1 ,

K2 = C2(k + 1)|Ω|
1−r
k+1max{|Ω|

M(k+1−m−)

k+1 , |Ω|
M(k+1−m+)

k+1 }.

On the other hand,

A(t) =

∫
Ω

G(u(x, t))dx ≥
∫

Ω

uk+1dx, (2.6)

combing with (2.5), we have

A′(t) ≤ K1(A(t))
k
k+1 +K2(A(t))

k+r+m−M
k+1 [1 + (A(t))

m+−m−
k+1 ]M . (2.7)

Integrating (2.7) from 0 to t (t < t∗), if limt→t∗ A(t) = +∞, we get

t∗ ≥
∫ +∞

A(0)

dη

K1ηr1 +K2ηr2(1 + ηr3)M
, (2.8)

where r1 = k
k+1

, r2 =
k+r+m−M

k+1
, r3 =

m+−m−
k+1

.

Integrating (2.7) from t to t∗, we obtain

t∗ − t ≥
∫ ∞
A(t)

dη

K1ηr1 +K2ηr2(1 + ηr3)M
= φ(A)(t), (2.9)
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obviously, φ(A)(t) is a decreasing function of A which means its inverse function φ−1 exists and it
is also a decreasing one. Therefore, we have

A(t) ≥ φ−1(t∗ − t), (2.10)

which gives the lower estimate of blow-up rate. In fact, if t close to t∗ enough, such that

K2η
k+r+m+M

K+1 > K1η
r1 ,

using (2.9), we have

t∗ − t ≥ k + 1

2K2(r +m+M − 1)
(A(t))

1−r−m+M

k+1 , (2.11)

which means that

A(t) ≥ (
k + 1

2K2(r +m+M − 1)
)

k+1
r+m+M−1 (t∗ − t)−

k+1
r+m+M−1 . (2.12)

Since A(t) ≤ b′M
∫

Ω
uk+1dx, combing with (2.12), we have

‖u(·, t)‖Lk+1 ≥ S
1
k+1
1 (t∗ − t)−

1
r+m+M−1 , (2.13)

where S1 = 1
b′
M

[ k+1
2K2(r+m+M−1)

]
k+1

r+m+M−1 .

Remark. This method is valid for 1 < p <∞ and not to restrict the space dimension.

Theorem 2.2. Let u be a nonnegative solution of (1.1) subject to Dirichlet boundary condition,
A(t) be defined as (2.1). Assume that f satisfies the conditions (F1), (F2) and (F4), then the
blow-up time t∗ is bounded from below. We have

t∗ ≥
∫ +∞

A(0)

dη

K3 +K4η
k
k+1 +K5η

3(n−p)
3n−4p

,

and blow-up rate estimate

‖u(·, t)‖Lk+1 ≥ S
1
k+1
2 (t∗ − t)−

3n−4p
p(k+1) ,

where K3, K4, K5 and S2 are positive constants which will be defined later.

Proof. From (2.2) and (F4), we know that

A′(t) = −k(k + 1)
∫

Ω
uk−1|∇u|pdx+ (k + 1)

∫
Ω
ukf(x, u)dx

≤ −k(k + 1)( p
k−1+p

)p
∫

Ω
|∇u

k−1+p
p |pdx+ C3(k + 1)

∫
Ω
ukdx

+C4(k + 1)
∫

Ω
uk+m(x)dx.

(2.14)

Like (2.4), ∫
Ω

uk+m(x)dx ≤
∫

Ω

uk+m−dx+

∫
Ω

uk+m+dx, (2.15)

by applying Hölder inequality, we have∫
Ω

uk+m−dx ≤ |Ω|m1(

∫
Ω

u
k(4n−3p)+p(n−3)+2n

4(n−p) dx)m2 , (2.16)

and ∫
Ω

uk+m+dx ≤ |Ω|m3(

∫
Ω

u
k(4n−3p)+p(n−3)+2n

4(n−p) dx)m4 , (2.17)
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where

m1 = 1− 4(n− p)(k +m−)

k(4n− 3p) + p(n− 3) + 2n
, m2 =

4(n− p)(k +m−)

k(4n− 3p) + p(n− 3) + 2n
,

m3 = 1− 4(n− p)(k +m+)

k(4n− 3p) + p(n− 3) + 2n
, m4 =

4(n− p)(k +m+)

k(4n− 3p) + p(n− 3) + 2n
.

Substituting (2.16), (2.17) into (2.15) and using Young inequality, we get∫
Ω

uk+m(x)dx ≤ l1 + l2

∫
Ω

u
k(4n−3p)+p(n−3)+2n

4(n−p) dx, (2.18)

where l1 = (m1 +m3)|Ω|, l2 = m2 +m4. Substituting (2.18) into (2.14), we have

A′(t) ≤ −k(k + 1)( p
k−1+p

)p
∫

Ω
|∇u

k−1+p
p |pdx+ C3(k + 1)|Ω|

1
k+1 (

∫
Ω
uk+1dx)

k
k+1

+C4l1(k + 1) + C4l2(k + 1)
∫

Ω
u
k(4n−3p)+p(n−3)+2n

4(n−p) dx.

(2.19)

We now make use of Hölder inequality to the last term on the right side of (2.19) to get∫
Ω

u
k(4n−3p)+p(n−3)+2n

4(n−p) dx ≤ (

∫
Ω

uk+1dx)
3
4 (

∫
Ω

(u
k−1+p
p )

np
n−p dx)

1
4 . (2.20)

Note that ∫
Ω

(u
k−1+p
p )

np
n−p dx ≤ (CS)

np
n−p (

∫
Ω

(|∇u
k−1+p
p |pdx)

n
n−p , (2.21)

here Cs is the best Sobolev’s constant. By inserting (2.21) in (2.20) and using the Young inequality,
we have

∫
Ω
u
k(4n−3p)+p(n−3)+2n

4(n−p) dx ≤ (3n−4p)(Cs)
np

4(n−p)

4(n−p)ε
n

3n−4p
(
∫

Ω
uk+1dx)

3(n−p)
3n−4p

+nε(Cs)
np

4(n−p)

4(n−p)

∫
Ω
|∇u

k−1+p
p |pdx,

(2.22)

where ε is a positive constant to be determined later. Combing with (2.22) and (2.19), we obtain

A′(t) ≤ K3 +K4(
∫

Ω
uk+1dx)

k
k+1 +K5(

∫
Ω
uk+1dx)

3(n−p)
3n−4p +K6

∫
Ω
|∇u

k−1+p
p |pdx

≤ K3 +K4(A(t))
k
k+1 +K5(A(t))

3(n−p)
3n−4p +K6

∫
Ω
|∇u

k−1+p
p |pdx,

(2.23)

where

K3 = C4l1(k + 1), K4 = C3(k + 1)|Ω|
1
k+1 , K5 = C4l2(k + 1)

(3n− 4p)(Cs)
np

4(n−p)

4(n− p)ε
n

3n−4p
,

K6 = C4l2(k + 1)nε(Cs)
np

4(n−p)

4(n−p) − k(k + 1)( p
k−1+p

)p.

If we choose ε > 0 such that

ε =
4k(n−p)( p

k−1+p
)p

C4l2n(Cs)
np

4(n−p)
,

then, we obtain the differential inequality

A′(t) ≤ K3 +K4(A(t))
k
k+1 +K5(A(t))

3(n−p)
3n−4p . (2.24)
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An integrating of the differential inequality (2.24) from 0 to t (t < t∗) leads to

t∗ ≥
∫ ∞
A(0)

dη

K3 +K4η
k
k+1 +K5η

3(n−p)
3n−4p

, (2.25)

if limt→t∗A(t) = +∞. Similar to (2.13), we get the lower estimate of the blow-up rate

‖u(·, t)‖Lk+1 ≥ S
1
k+1
2 (t∗ − t)−

3n−4p
p(k+1) , (2.26)

where S2 = 3n−4p
2b′
M
K5P

.

3 Upper Bounds for the Blow-up Time of the Solution

In this section we seek the upper bound for the blow-up time and corresponding estimates of the
blow-up rate. Define

B(t) = 2

∫
Ω

∫ u

0

sb′(s)dsdx, H(t) =

∫
Ω

(F (x, u)− 1

p
|∇u|p)dx. (3.1)

Then, we have the following results.

Theorem 3.1. Let u be a nonnegative solution of (1.1) subject to Dirichlet (or Neumann) boundary
condition, B(t), H(t) be defined as (3.1). Assume that f satisfies (F1), (F2) and (F5), then the
blow-up time t∗ is bounded from up. We have

t∗ ≤ B(0)

4α(1 + α)H(0)
,

and blow-up rate estimate

‖u(·, t)‖L2 ≤ S
1
2
3 (t∗ − t)−

α
2 ,

where S3 = (B(0))1+α

4α(1+α)H(0)b′m
.

Proof. Multiplying the first equality of (1.1) by ut and integrating the resulting equality over Ω,
we have ∫

Ω
(b(u))tutdx =

∫
Ω

div(|∇u|p−2∇u)utdx+
∫

Ω
f(x, u)utdx

= −
∫

Ω
|∇u|p−2∇u∇utdx+ d

dt
(
∫

Ω
F (x, u)dx)

= − d
dt

( 1
p

∫
Ω
|∇u|pdx−

∫
Ω
F (x, u)dx)

= H ′(t).

(3.2)

From condition (G1) and the fact that
∫

Ω
(b(u))tutdx ≥ 0, we know that H ′(t) ≥ 0, H(t) ≥ 0. Next,

we compute
B′(t) = 2

∫
Ω
ub′(u)utdx

= 2
∫

Ω
u[div(|∇u|p−2∇u) + f(x, u)]dx

≥ −2
∫

Ω
|∇u|pdx+ 4(1 + α)

∫
Ω
F (x, u)dx

≥ 4(1 + α)
∫

Ω
[F (x, u)− 1

p
|∇u|p]dx

= 4(1 + α)H(t),

(3.3)

it follows that

(1 + α)B′(t)H(t) ≤ 1

4
(B′(t))2 = (

∫
Ω

ub′(u)utdx)2 ≤ (

∫
Ω

u2b′(u)dx)(

∫
Ω

b′(u)u2
tdx). (3.4)

7
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By integrating by parts on
∫ u

0
sb′(s)ds, it is easy to see that

∫
Ω
u2b′(u)dx ≤ B(t), then

(1 + α)B′(t)H(t) ≤ B(t)H ′(t), (3.5)

which means that

d

dt
[(B(t))−(1+α)H(t)] ≥ 0, (3.6)

Integrating (3.6) from 0 to t, we have

(B(t))−(1+α)H(t) ≥ (B(0))−(1+α)H(0), (3.7)

that is

H(t)

H(0)
≥ (

B(t)

B(0)
)1+α. (3.8)

Combing with (3.3), we get

B′(t)

(B(t))1+α
≥ 4(1 + α)H(0)

(B(0))1+α
= l3. (3.9)

Integrating (3.9) from 0 to t, we have

(B(t))−α ≤ (B(0))−α − αl3t. (3.10)

Since inequality (3.10) cannot hold for (B(0))−α − αl3t ≤ 0, we thus conclude that solution u of
the problem (1.1) blows up at some finite time t∗ and t∗ is bounded from up by

t∗ ≤ (B(0))−α

αl3
=

B(0)

4α(1 + α)H(0)
. (3.11)

Integrating (3.11) from t to t∗, we have

B(t) ≤ (B(0))1+α

4α(1 + α)H(0)
(t∗ − t)−α. (3.12)

Since B(t) ≥ b′m
∫

Ω
u2dx, from (3.12), we get

‖u(·, t)‖L2 ≤ S
1
2
3 (t∗ − t)−

α
2 , (3.13)

where S3 = (B(0))1+α

4α(1+α)H(0)b′m
.

4 A Remark and Some Examples

In this section we will give a remark and two examples to illustrate the results in our work and
make some discussions.

Remark 4.1. When b(u) ≡ u, p = 2, f(x, u) = um(x) = up(x), the problem (1.1) under Dirichlet
boundary condition is model (1.2). Moreover, if m− and k in Theorem 2.2 satisfy m− > 1, k >
max{2(n − 2)(m+ − 1), 1}, we can obtain similar result in [27]. That is, blow-up time is bounded
from below by ∫ +∞

A(0)

dη

K7 +K8η
3(n−2)
3n−8

, (4.1)

8
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here K7 = (m1 + m3)|Ω|(k + 1), K8 = (k+1)(Cs)
n

2(n−2) (3n−8)(m2+m4)

4(n−2)ε
n

3n−8
. Besides, we have the

corresponding estimate of blow-up rate

‖u‖LK+1 ≥ (
3n− 8

4K8
)

1
k+1 (t∗ − t)−

3n−8
2(k+1) . (4.2)

If the positive constants α in (F5) satisfies 0 < α <
m−−1

2
(m− = p− > 1), by the results of

Theorem 3.1, we get the upper bound for the blow-up time and the estimate of blow-up rate, that
is

t∗ ≤ B(0)

4α(1 + α)H(0)
, (4.3)

and

‖u‖L2 ≤ (B(0))1+α

4α(1 + α)H(0)
(t∗ − t)−

α
2 , (4.4)

with B(0) =
∫

Ω
g2(x)dx, H(0) =

∫
Ω

(F (x, g)− 1
2
|∇g|2)dx.

Example 4.2. Let us consider the following example: (u+
√

1 + u)t = div(|∇u|p−2∇u) + (
∫

Ω
uβdx)

q
β , x ∈ Ω, t > 0,

u(x, t) = 0 or ∂u
∂n

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = g(x) ≥ 0, x ∈ Ω,

(4.5)

where 1 < p ≤ 2, 0 < β ≤ k + 1, q > 1. Now we have

b(u) = u+
√

1 + u, f(x, u) = (

∫
Ω

uβdx)
q
β .

Applying Theorem 2.1, we have

t∗ ≥ 1

K9
(A(0))

1−q
k+1 , (4.6)

and

‖u‖Lk+1 ≥ (
1

2K9
)
k+1
q−1 (t∗ − t)−

k+1
q−1 , (4.7)

where K9 = (q − 1)|Ω|
k+2−β
k+1 .

Applying Theorem 3.1, we have

t∗ ≤ B(0)

4α(1 + α)H(0)
, (4.8)

and

‖u‖L2 ≤ S
1
2
4 (t∗ − t)−

α
2 , (4.9)

where S4 = (B(0))1+α

4α(1+α)H(0)
.

From (4.6) and (4.8), we get the bounds for the blow-up time of the solution to the problem (4.5),
that is

1

K9
A(0)

1−q
k+1 ≤ t∗ ≤ B(0)

4α(1 + α)H(0)
. (4.10)

Example 4.3. Let u be a nonnegative solution of the following problem: (u+ 2
√

1 + u)t = div(|∇u|p−2∇u) + u2+
∑N
i=1 x

2
i , x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t > 0,

u(x, 0) = 4−
∑N
i=1 x

2
i , x ∈ Ω,

(4.11)

9
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where Ω = {x = (x1, x2, ..., xN )|
∑N
i=1 x

2
i < 1} is a unit ball of RN , 1 < p ≤ 2. Now we have

b(u) = u+ 2
√

1 + u, f(x, u) = u1+
∑N
i=1 x

2
i , g(x) = 4−

N∑
i=1

x2
i .

Substituting m− = 2, m+ = 3, c3 = 0, c4 = 1, b′M = 2 into Theorem 2.2, we could get the lower
bound for the blow-up time and blow-up rate of the solution to the problem (4.11) like (2.25),
(2.26). From Theorem 3.1, we know that

t∗ ≤ B(0)

4α(1 + α)H(0)
, (4.12)

and

‖u‖L2 ≤ (
(B(0))1+α

4α(1 + α)H(0)
)
1
2 (t∗ − t)−

α
2 . (4.13)

As

B(0) = 2

∫
Ω

∫ g

0

sb′(s)dsdx ≤ 4

∫
Ω

∫ 4

0

sdsdx = 32|Ω|, (4.14)

and

H(0) =
∫

Ω
(F (x, g)− 1

p
|∇g|p)dx

=
∫

Ω
( g

3+
∑N
i=1 x

2
i

3+
∑N
i=1 x

2
i
− 2p

p
(
∑N
i=1 x

2
i )
p
2 )dx

≥ 27p−2p+2

4p
|Ω|.

(4.15)

Taking (4.14) and (4.15) into (4.12), (4.13), we obtain

t∗ ≤ 32p

α(1 + α)(27p− 2p+2)
, (4.16)

and

‖u‖L2 ≤ (
32p|Ω|α

α(1 + α)(27p− 2p+2)
)
1
2 (t∗ − t)−

α
2 . (4.17)

5 Conclusion

We construct some suitable auxiliary functions and find the upper and lower bounds for the blow-up
time when blow-up phenomena occurs, accordingly, give the estimates of the blow-up rate of the
solution to the problem.
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